1. (a) $\mathbf{H C l}$ is a strong acid and dissociates completely according to the reaction:

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$\mathrm{As}[\mathrm{HCl}]=0.012 \mathrm{M},\left[\mathrm{H}^{+}\right]=0.012 \mathrm{M}$. The $\mathbf{p H}$ is then:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=\log _{10}(0.012)=1.92
$$

(b) NaOH is a strong acid and dissociates completely according to the reaction:

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

As $[\mathrm{NaOH}]=0.005,\left[\mathrm{OH}^{-}\right]=0.005$. The pOH is then:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}(0.005)=2.30
$$

To work out the $\mathbf{p H}$, the relationship $\mathbf{p H}+\mathbf{p O H}=14$ can be used:

$$
\mathrm{pH}=14-2.30=11.7
$$

(c) The molar mass of $\mathbf{N a O H}$ is $22.99(\mathrm{Na})+16.00(\mathrm{O})+1.008(\mathrm{H})=39.998 \mathrm{~g}$ mol^{-1}. If 10.0 g of this is used, the number of moles is:

$$
\text { number of moles }=\frac{\text { mass }}{\text { molar mass }}=\frac{10.0 \mathrm{~g}}{39.998 \mathrm{~g} \mathrm{~mol}^{-1}}=0.250 \mathrm{~mol}
$$

This number of moles is dissolved in 500 mL or 0.500 L of water. As described in (c), the dissociation of the strong base NaOH is complete so the concentration of $\left[\mathrm{OH}^{-}\right]$is therefore:

$$
\left[\mathrm{OH}^{-}\right]=\frac{\text { number of moles }}{\text { volume }}=\frac{0.250 \mathrm{~mol}}{0.500 \mathrm{~L}}=0.500 \mathrm{M}
$$

As $\left[\mathrm{OH}^{-}\right]=0.500 \mathrm{M}$. The pOH is then:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}(0.500)=0.30
$$

To work out the $\mathbf{p H}$, the relationship $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4 . 0 0}$ can be used:

$$
\mathrm{pH}=14.00-0.30=13.70
$$

(d) The number of moles in $20 . \mathrm{mL}$ of 10 M nitric acid is:

$$
\begin{aligned}
\text { number of moles } & =\text { volume } \times \text { concentration } \\
& =(0.020 \mathrm{~L}) \times\left(10 . \mathrm{mol} \mathrm{~L}^{-1}\right)=0.20 \mathrm{~mol}
\end{aligned}
$$

As the solution is then diluted to 1.0 L , the concentration of nitric acid becomes:

$$
\text { concentration }=\frac{\text { number of moles }}{\text { volume }}=\frac{0.20 \mathrm{~mol}}{1.0 \mathrm{~L}}=0.20 \mathrm{M}
$$

Nitric acid is a strong acid, so this is also $\left[\mathrm{H}^{+}\right]$. Hence, the $\mathbf{p H}$ is:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=\log _{10}(0.20)=0.70
$$

(e) The number of moles of sulfuric acid and potassium hydroxide at the start of the reaction are, respectively:

$$
\begin{aligned}
\text { moles of } \mathrm{H}_{2} \mathrm{SO}_{4} & =\text { volume } \times \text { concentration } \\
& =(0.030 \mathrm{~L}) \times\left(2.0 \mathrm{~mol} \mathrm{~L}^{-1}\right)=0.060 \mathrm{~mol} \\
\text { moles of } \mathrm{KOH}= & \text { volume } \times \text { concentration } \\
& =(0.070 \mathrm{~L}) \times\left(1.0 \mathrm{~mol} \mathrm{~L}^{-1}\right)=0.070 \mathrm{~mol}
\end{aligned}
$$

The strong acid dissociates to give two H^{+}, hence:
number of moles of $\mathbf{H}^{+}=2 \times 0.060 \mathbf{m o l}=0.120 \mathbf{~ m o l}$

The strong base dissociates to give one OH^{-}, hence:
number of moles of $\mathbf{O H}^{-}=\mathbf{0 . 0 7 0} \mathbf{~ m o l}$

The neutralization reaction will be incomplete as there is not enough base, hence after neutralization:
number of moles of $\mathbf{H}^{+}=(0.120-\mathbf{0 . 0 7 0}) \mathbf{m o l}=0.050 \mathbf{m o l}$
The volume of the solution after mixing is $(30+70) \mathrm{mL}=100 \mathrm{~mL}$ or 0.100 L . The concentration of $\left[\mathrm{H}^{+}\right]$is therefore:

$$
\text { concentration }=\frac{\text { number of moles }}{\text { volume }}=\frac{0.050 \mathrm{~mol}}{0.100 \mathrm{~L}}=0.50 \mathrm{M}
$$

Hence, the pH is:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=\log _{10}(0.50)=0.30
$$

2. In completing the table, the following relationships are used:
(i) $\quad \mathrm{p} K_{a}=-\log K_{\mathrm{a}}$
(ii) $\mathrm{p} K_{b}=-\log K_{\mathrm{b}}$
(iii) $\mathbf{p K a}+\mathbf{p} K_{b}=14$

acid	$K_{\text {a }}$ of acid	$\mathrm{p} K_{\mathrm{a}}$ of acid	conjugate base	K_{b} of base	$\mathrm{p} K_{\mathrm{b}}$ of base
HNO_{2}	$10^{-3.15}$	3.15	$\mathrm{NO}_{2}{ }^{-}$	$10^{-10.85}$	$\begin{gathered} 14-3.15= \\ 10.85 \end{gathered}$
HCN	$10^{-9.21}$	9.21	CN^{-}	$10^{-4.79}$	$\begin{gathered} 14-9.21= \\ 4.79 \end{gathered}$
$\mathrm{NH}_{4}{ }^{+}$	$10^{-9.24}$	$\begin{gathered} 14-4.76= \\ 934 \end{gathered}=$	NH_{3}	$10^{-4.76}$	4.76
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$10^{-4.76}$	4.76	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$10^{-10.24}$	$\begin{gathered} 14-4.76= \\ 9.24 \end{gathered}$
$\mathrm{HCO}_{3}{ }^{-}$	$10^{-10.33}$	$\begin{gathered} 14-3.67= \\ 10.33 \end{gathered}$	$\mathrm{CO}_{3}{ }^{2-}$	$10^{-3.67}$	3.67
HF	$10^{-3.17}$	$\begin{gathered} 14-10.83= \\ 3.17 \end{gathered}$	\mathbf{F}^{-}	$10^{-10.83}$	10.83
$\mathrm{HPO}_{4}{ }^{2-}$	$10^{-12.38}$	12.38	$\mathrm{PO}_{4}{ }^{3-}$	$10^{-1.62}$	$\begin{gathered} 14-12.38= \\ 1.62 \end{gathered}$
$\mathrm{H}_{2} \mathrm{O}$	$10^{-15.74}$	15.74	OH^{-}	$10^{1.74}$	$\begin{gathered} 14-15.74= \\ -1.74 \end{gathered}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	$10^{1.74}$	-1.74	$\mathrm{H}_{2} \mathrm{O}$	$10^{-15.74}$	$\begin{gathered} 14-(-1.74)= \\ 15.74 \end{gathered}$
NH_{3}	10^{-34}	34	$\mathrm{NH}_{2}{ }^{-}$	10^{20}	14-34 =-20

3. The ionic product is $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$. Neutral blood has $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and so

$$
K_{w}=\left[\mathrm{H}^{+}\right]^{2}=2.49 \times 10^{-14} \quad \text { so }\left[\mathrm{H}^{+}\right]=1.58 \times 10^{-7} \mathrm{M}
$$

As $\mathbf{p H}=-\log _{10}\left[\mathrm{H}^{+}\right]$, the $\mathbf{p H}$ of neutral blood at $37{ }^{\circ} \mathrm{C}$ is $-\log _{10}\left(1.58 \times 10^{-14}\right)=6.8$.
4.

5.

 $\mathrm{C}_{5} \mathrm{H}_{10}$
no functional groups

$\mathrm{C}_{6} \mathrm{H}_{6}$
aromatic

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$
alkyl halide

$$
\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}
$$

alkene and carboxylic acid

