Topics in the June 2006 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2006-J-2:

- Assumed Knowledge
- Atomic Structure
- Chemical Bonding

2006-J-3:

Assumed Knowledge

2006-J-4:

- Chemical Bonding
- The Shapes of Molecules
- Intermolecular forces

2006-J-5:

Acids and Bases

2006-J-6:

- Aromatic Hydrocarbons
- Alcohols, Phenols, Ethers and Thiols

2006-J-7:

- Introduction to Organic Chemistry
- Aldehydes and Ketones
- Spectroscopy
- Stereochemistry

2006-J-8:

- Alkenes
- Organic Halogen Compounds
- Alcohols, Phenols, Ethers and Thiols
- Amines
- Aromatic Hydrocarbons
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-J-9:

- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-J-10:

Carbohydrates

2006-J-11:

• Introduction to Organic Chemistry

2006-J-12:

• Amino Acids, Peptides and Proteins

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

What are the three quantum numbers that describe the orbital that contains the electron furthest from the nucleus in the K atom?

$n = 4$ $l = 0$ $m_1 = 0$	
---------------------------	--

• Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the species have contributing resonance structures.

• Human haemoglobin has a molar weight of 6.45×10^4 g mol⁻¹ and contains 3.46 g of iron per kg. Calculate the number of iron atoms in each molecule of haemoglobin.

A mole of haemoglobin has a mass of 6.45×10^4 g = 64.5 kg. As each kilogram contains 3.45 g of iron, a mole contains (64.5×3.45) = 223 g of iron.

The atomic mass of iron is 55.85 so this mass of iron corresponds to:

number of moles of iron =
$$\frac{\text{mass}}{\text{atomic mass}} = \frac{223}{55.85} = 3.98$$

Answer:4 iron atoms per molecule

4

3

Marks

2

2006-J-3

Marks • If 50 mL of a 0.10 M solution of AgNO₃ is mixed with 50 mL of a 0.040 M solution 3 of BaCl₂, what mass of AgCl(s) will precipitate from the reaction? The precipitation reaction, $Ag^+(aq) + CI^-(aq) \rightarrow AgCl(s)$, is a 1:1 reaction of $Ag^{+}(aq)$ and $Cl^{-}(aq)$ ions. Number of moles of Ag⁺ = concentration × volume = $0.10 \times \frac{50}{1000} = 0.0050$ mol As each mole of BaCl₂(s) gives two moles of Cl⁻(aq): Number of moles of CI = $2 \times 0.040 \times \frac{50}{1000} = 0.0040$ mol $Ag^{+}(aq)$ is present in excess so Cl⁻(aq) is the limiting reagent. Hence, 0.0040 mol of AgCl(s) will be formed. The molar mass of AgCl(s) = (107.87 (Ag)) + (35.45 (Cl)) = 143.32. The mass of AgCl(s) formed is: mass = number of moles \times molar mass = 0.0040 \times 143.32 = 0.57 g Answer: 0.57 g What is the concentration of NO_3^- ions in the final solution from the reaction above? The number of moles of $NO_3(aq)$ is 0.0050 mol. After mixing, the final solution has a volume of (50 + 50) = 100 mL. Hence, the concentration is: $[NO_3^-] = \frac{\text{number of moles}}{\text{volume}} = \frac{0.0050}{100/1000} = 0.050 \text{ M}$ Answer: 0.050 M

• Tranexamic acid, *trans*-(4-aminomethyl)cyclohexanecarboxylic acid, is used for the treatment of severe haemorrhage in patients with haemophilia.

Provide the requested information for each of the indicated atoms in tranexamic acid.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry/shape of σ -bonding electron pairs around the atom
C-1	trigonal planar	sp ²	trigonal planar
C-2	tetrahedral	sp ³	tetrahedral
O-3	tetrahedral	sp ³	bent
N-4	tetrahedral	sp ³	trigonal pyramidal

• Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $CH_3CH_2CH_2SH < CH_3CH_2CH_2OH < CH_3CH_2CH_2SeH$.

Polarisability of atoms increases as the size of the atoms increase. The greater the polarisability, the stronger the dispersion forces. On this basis, the expected boiling point order would be $C_3H_7OH < C_3H_7SH < C_3H_7SeH$.

 C_3H_7OH also has hydrogen bonding between the OH groups. H-bonding is a stronger intermolecular force than dispersion forces and this increases the boiling point of C_3H_7OH to be above that of C_3H_7SH . The effect is not enough to push it above the boiling point of C_3H_7SH .

3

Marks

4

• Consider the following equation.

 $HBrO(aq) + NH_3(aq) \implies BrO^-(aq) + NH_4^+(aq)$

Name all of the species in this equation.

HBrO	hypobromous acid
BrO^{-}	hypobromite ion
NH ₃	ammonia
$\mathrm{NH_4}^+$	ammonium ion

Complete the following table by giving the correct pK_a or pK_b value where it can be calculated. Mark with a cross (\times) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH ₃	BrO [−]	$\mathrm{NH_4}^+$
pK_a of acid	8.64	×	×	9.24
pK_b of base	×	4.76	5.36	×

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

The reaction is the sum of the acid-base equilibra for HBrO and NH3:HBrO(aq) \Rightarrow H⁺(aq) + BrO⁻(aq) K_a (HBrO) = 10^{-8.64}H⁺(aq) + NH3(aq) \Rightarrow NH4⁺(aq) $K(NH3) = \frac{1}{K_a(NH_4^+)} = 10^{+9.24}$ HBrO(aq) + NH3(aq) \Rightarrow BrO⁻(aq) $K = K_a(HBrO) \times K(NH3)$

Hence, $K = (10^{-8.64}) \times (10^{+9.24}) = 10^{+0.64} = 4.4$. As K > 1, the reaction favours products.

Draw the Haworth structure of a non-reducing disaccharide, which yields D-galactose and D-ribose on acid hydrolysis.

• Name the following compo	inds.	Marks 2
но	5-hydroxy-5-methyl-2-hexanone or 5-hydroxy-5-methylhexan-2-one	
Br	1-bromo-3-methyl-2-butene or 1-bromo-3-methylbut-2-ene	

Marks • The structure of the naturally occurring tetrapeptide His-Phe-Ala-Glu, A, is shown 10 below as the zwitterion. $\overset{\circledast}{H_3N} \overset{-}{\underset{\stackrel{l}{\to}}{CH}} \overset{-}{\underset{\stackrel{l}{\to}}{CH}_2} \overset{-}{\underset{\stackrel{l}{\to}}{CH}_2} \overset{-}{\underset{\stackrel{l}{\to}}{CH}_3} \overset{\odot}{\underset{\stackrel{l}{\to}}{CH}_2} \overset{\odot}{\underset{\stackrel{l}{\to}}{CH}_3} \overset{\odot}{\underset{\stackrel{l}{\to}}{CH}_2} \overset{\odot}{\underset{\stackrel{l}{\to}}{CH}_3}$ А ĊOOH ΙH Give the product(s) obtained when A is treated with cold 1 M NaOH solution. NH₂-CH-C-N- $-CH-CH-N-CH-CH-CH-CO_{2}$ ĊH₂ Ĥ ĊH₃ Ĥ CH₂ Ĥ Θ CO_2 NH Ν Give the Fischer projections of the four L-amino acids in their correct ionic states obtained from the vigorous basic hydrolysis (6 M KOH) of A. $\begin{array}{ccccccc} & & & & & & & & & & \\ H_2N & & & & & & & & & & \\ H_2N & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$ co_2^{\ominus} H_2N -н ĊH₂ .NH

(II)

Η·

NH