Topics in the June 2007 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2007-J-2:

- Assumed Knowledge
- Chemical Bonding

2007-J-3:

- The Shapes of Molecules
- Intermolecular forces
- Acids and Bases
- Assumed Knowledge

2007-J-4:

Assumed Knowledge

2007-J-5:

• Introduction to Organic Chemistry

2007-J-6:

- Aromatic Hydrocarbons
- Organic Halogen Compounds
- Aldehydes and Ketones

```
2007-J-7:
```

• Heterocyclic Compounds

2007-J-8:

Alkenes

2007-J-9:

- Introduction to Organic Chemistry
- Stereochemistry

2007-J-10:

• Aromatic Hydrocarbons

2007-J-11:

- Aromatic Hydrocarbons
- Aldehydes and Ketones

2007-J-12:

Carbohydrates

2007-J-13:

• Amino Acids, Peptides and Proteins

• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the number of *d* electrons for the element in this oxidation state.

Formula	Systematic name	Oxidation number	Number of <i>d</i> electrons
$\underline{C}O_2$	carbon dioxide	+IV or +4	0
Na ₂ <u>Cr</u> O ₄	sodium chromate	+VI or +6	0
<u>Fe</u> Cl ₃ ·3H ₂ O	iron(III) chloride-3-water (the non-IUPAC form "iron(III) chloride trihydrate" is also acceptable)	+III or +3	5
K ₂ SO ₄	potassium sulfate	·	· ·

• Draw the Lewis structures, showing all valence electrons for the following species.

CH_3^-	CH_3^+
$\begin{bmatrix} \vdots \\ H - C - H \\ H \end{bmatrix} \ominus$	$\begin{bmatrix} H - C - H \\ H \\ H \end{bmatrix} \textcircled{}$

Indicate which of these species you expect will be more stable and explain why.

CH₃⁻ is more stable as it has a full octet of electrons

• Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula: $C_{25}H_{48}O_8N_6$) can bind one Fe³⁺ ion. A patient with an iron-overload disease had an excess of 5.34×10^{-4} M Fe³⁺ in her bloodstream. Assuming the patient had a total blood volume of 4.84 L, what mass of Desferal would be required to complex all of the excess Fe³⁺?

As one mole of Deferal will complex one mole of Fe³⁺, the number of moles of Desferal required is:

number of moles = concentration × volume = $(5.34 \times 10^{-4}) \times 4.84 = 2.58 \times 10^{-3}$ M

The molar mass of C₂₅H₄₈O₈N₆ is:

$$(25 \times 12.01 \text{ (C)}) + (48 \times 1.008 \text{ (H)}) + (8 \times 16.00 \text{ (O)}) + (6 \times 14.01 \text{ (N)}) = 560.694$$

Hence, the mass required is:

mass = number of moles \times molar mass = $(2.58 \times 10^{-3}) \times (560.694) = 1.45$ g

Answer: **1.45 g**

3

2

Marks • Glycine, NH₂CH₂COOH, the simplest of all naturally occurring amino acids, has a 5 melting point of 292 °C. The pK_a of the acid group is 2.35 and the pK_a associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4. As pH = 7.4 is higher than the pK_a of the acid group, -COOH, it will exist primarily in its deprotonated, conjugate base form, -COO. As pH = 7.4 is lower than the pK_a of the amino group, $-NH_2$, it will exist primarility in its protonated form, -NH₃⁺. $\stackrel{\oplus}{}_{H_3N} - CH_2 - COO^{\ominus}$ Glycine will exist in the uncharged, zwitterionic form: Describe the hybridisation of the two carbon atoms and the nitrogen atom in glycine and the geometry of the atoms surrounding these three atoms. N has 4 bonds and no lone pairs: sp³ with a tetrahedral The structure is: arrangement. C_a has 4 bonds and no lone pairs: sp³ with a tetrahedral arrangement. C_b has 3 bonds and no lone pairs: sp² with a trigonal planar arrangement. Glycine has an unusually high melting point for a small molecule. Suggest a reason for this. Glycine with a positively and a negatively charged end. There is therefore ionic bonding between the molecules leading to strong intermolecular forces. 2 • Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of oxygen gas that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L. Using the ideal gas law, PV = nRT, the number of moles that can be stored is: $\mathbf{n} = \frac{\mathbf{PV}}{\mathbf{RT}} = \frac{(170) \times (60.0)}{(0.08206) \times (20 + 273)} = 424 \, \text{mol}$ As the molar mass of O_2 is $(2 \times 16.00) = 32.00$, this corresponds to a mass of: mass = number of moles \times molar mass = 424 \times 32.00 = 13600 g = 13.6 kg Answer: 13.6 kg

Marks • If 20.0 mL of a 0.100 M solution of sodium phosphate is mixed with 25.0 mL of a 6 0.200 M solution of zinc chloride, what mass of zinc phosphate will precipitate from the reaction? 25.0 mL of a 0.200 M solution of ZnCl₂ contains: $n(Zn^{2+}(aq)) = concentration \times volume = 0.200 \times \frac{25}{1000} = 0.00500 mol$ 20.0 mL of a 0.100 solution of Na₃PO₄ contains: $n(PO_4^{3-}) = 0.100 \times \frac{20}{1000} = 0.00200 \text{ mol}$ The ionic equation for the precipitation reaction is: $3Zn^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Zn_3(PO_4)_2(s)$ As $n(Zn^{2+}(aq) > \frac{3}{2} \times n(PO_4^{-3-}(aq)), PO_4^{-3-}$ which is the limiting reagent. The maximum amount of product depends on $n(PO_4^{3-})$. The amount of zinc phosphate formed is: $n(Zn_3(PO_4)_2(s) = \frac{1}{2} \times n(PO_4^{3-}(aq)) = \frac{1}{2} \times 0.00200 = 0.00100 \text{ mol}$ The formula mass of zinc phosphate is: $(3 \times 65.39 (Zn)) + 2 \times (30.97 (P) + 4 \times 16.00 (O)) = 386.11$ The mass of this amount of zinc phosphate is therefore: mass = number of moles \times formula mass = 0.00100 \times 386.11 = 0.386 g

Answer: 0.386 g

ANSWER CONTINUES ON THE NEXT PAGE

What is the final concentration of zinc ions in solution after the above reaction?

The number of moles of $Zn^{2+}(aq)$ removed by precipitation = $3 \times 0.00100 = 0.00300$ mol. The amount remaining is therefore:

 $n(Zn^{2+}(aq)) = 0.00500 - 0.00300 = 0.00200 mol$

The total volume of the solution after mixing is (20.0 + 25.0) = 45.0 mL so the concentration is:

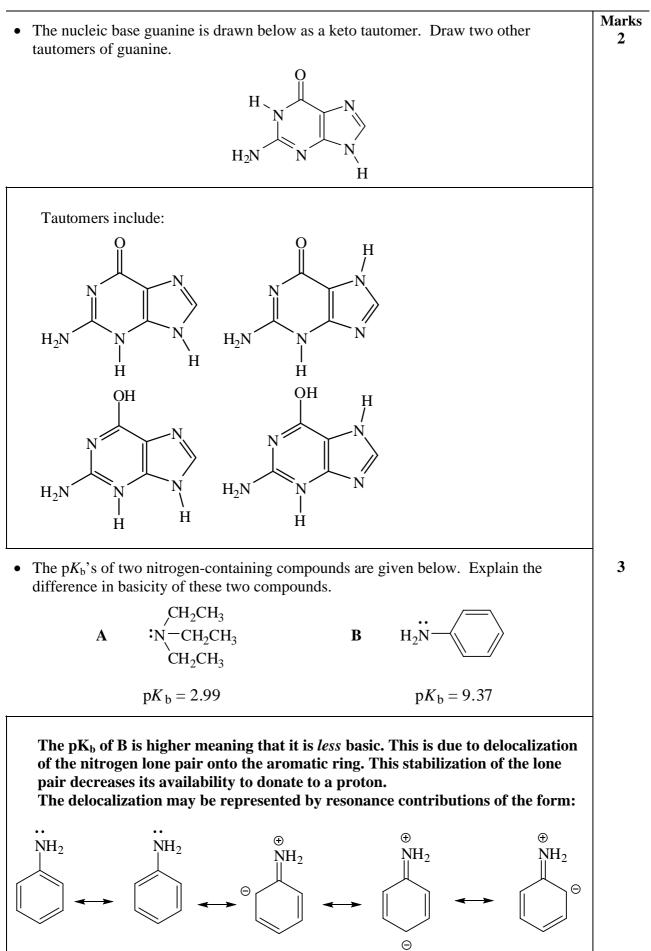
 $[Zn^{2+}(aq)] = \frac{number of moles}{volume} = \frac{0.00200}{(45/1000)} = 0.0444 M$

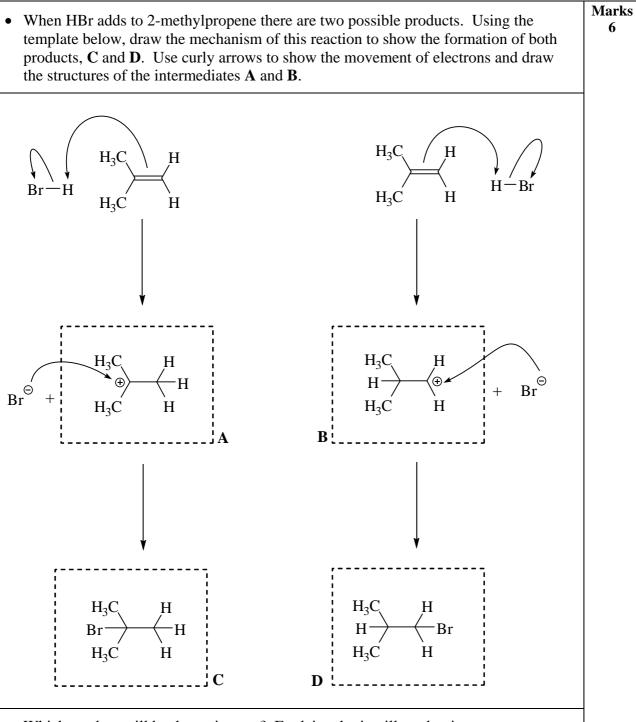
Answer: **0.0444** M

What is the final concentration of sodium ions in solution after the above reaction?

20.0 mL of a 0.100 solution of Na₃PO₄ contains:

 $n(Na^+) = 3 \times 0.100 \times \frac{20}{1000} = 0.00600 \text{ mol}$


After mixing, this amount is contained in a volume of 45.0 mL so the concentration is:


 $[Na^{+}(aq)] = \frac{number of moles}{volume} = \frac{0.00600}{(45/1000)} = 0.133 M$

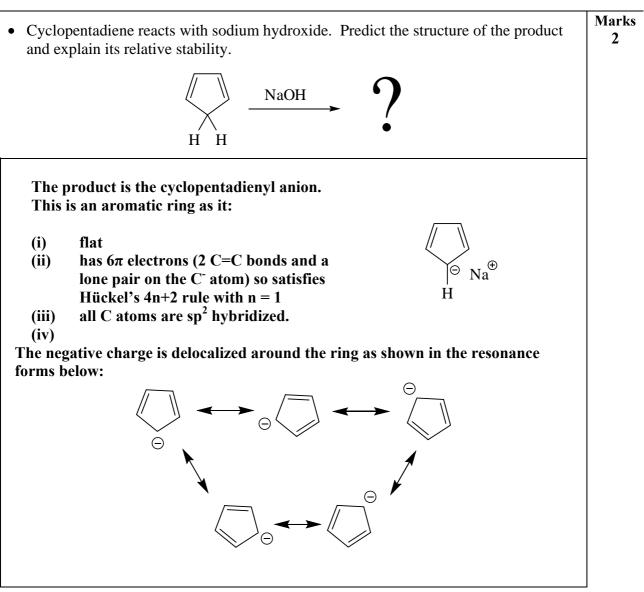
Answer: 0.133 M

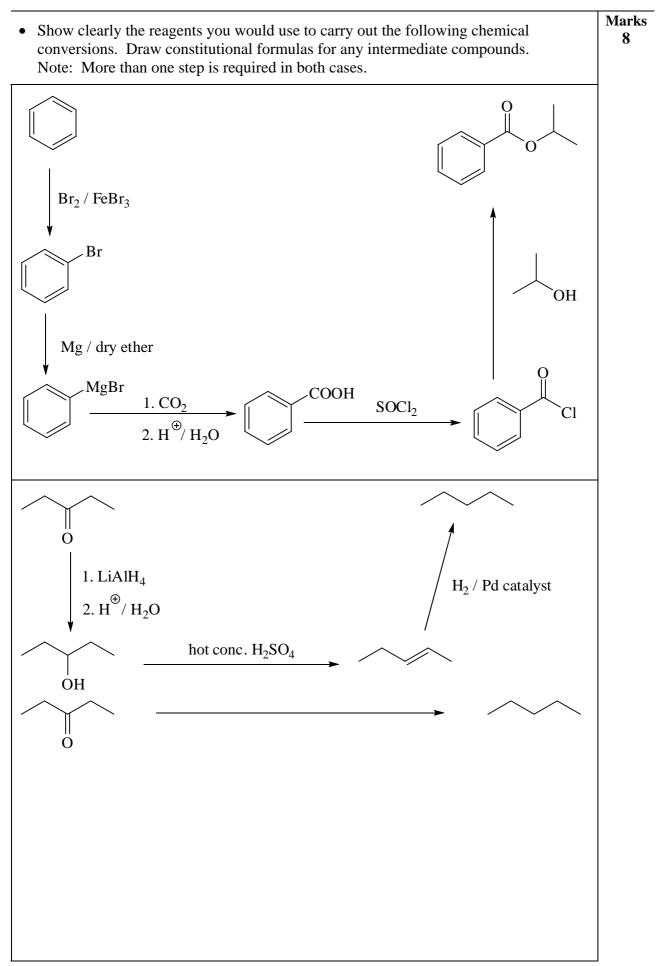
• Name the following cor where appropriate.	npounds. Make sure you include stereochemical descriptors	Marks 5
Cl Br	(E)-2-bromo-3-chloro-2-pentene (E as the highest ranking substituents (Cl and Br) are on opposite sides of C=C bond)	
	1,4-dimethylcyclohexene	
	propyl acetate	
0	(Z)-3-penten-2-one (Z as highest ranking substituents (CH ₃ and COCH ₃) are on the same side of C=C bond)	
Br Br Br	2,4,6-tribromophenol	

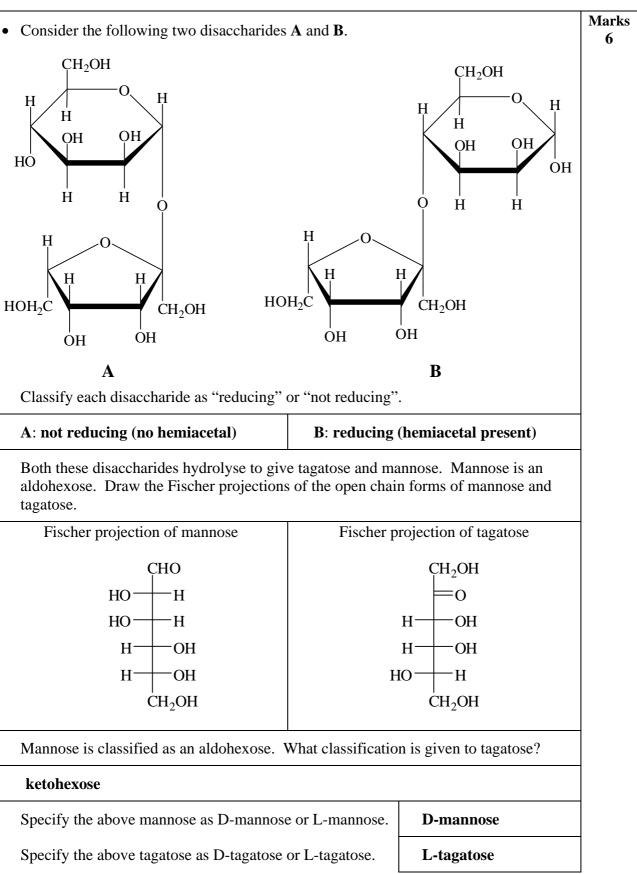
• Complete the following table.				Marks 5
S	STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
		1. CH ₃ MgBr 2. H [⊕] / H ₂ O	HO CH ₃	
		FeCl ₃ / Cl ₂ or AlCl ₃ / Cl ₂	Cl	
	OH O H	${\rm Cr_2O_7^{2-}}/{\rm H^+}$	ООН	
	OH O H	$[Ag(NH_3)_2]^{\oplus}/OH^{\Theta}$	OH CO ₂	
	Br	CH ₃ S [☉] Na [⊕]	s	

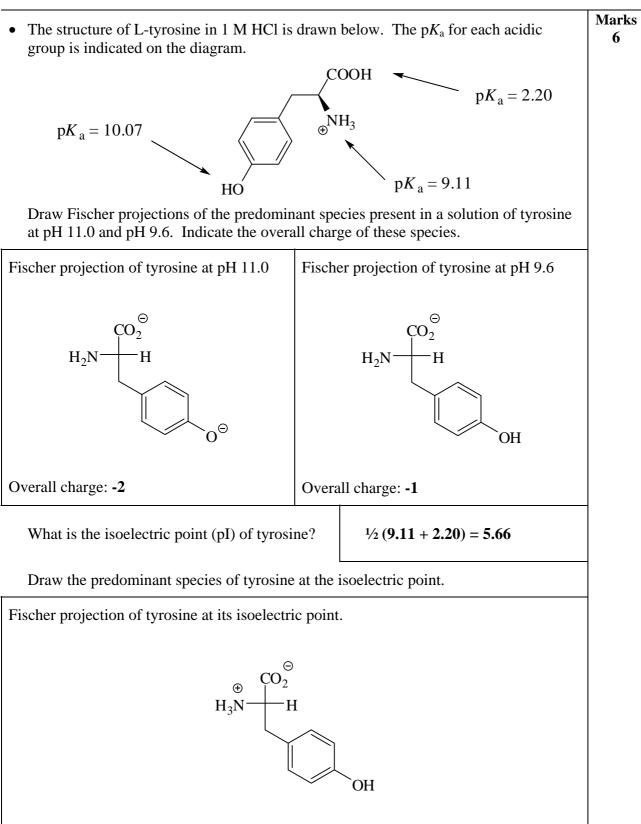
Which product will be the major one? Explain why it will predominate.

C will be the major product as the carbocation intermediate along the path to its formation, A, is more stable than that, B, along the path to formation of D.


The tertiary carbocation A is more stable than the primary carbocation B.


This results in the Markovnikov addition product C as the major product.


What is the name given to this type of reaction?


Electrophilic addition

