Topics in the June 2010 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2010-J-2:

- Atomic Structure
- Chemical Bonding

2010-J-3:

Chemical Bonding

2010-J-4:

- Intermolecular forces
- Acids and Bases

2010-J-5:

- Acids and Bases
- Intermolecular forces

2010-J-6:

- Alkenes
- Alcohols, Phenols, Ethers and Thiols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2010-J-7:

• Heterocyclic Compounds

2010-J-8:

- Introduction to Organic Chemistry
- Stereochemistry

2010-J-9:

- Alkenes
- Organic Halogen Compounds
- Alcohols, Phenols, Ethers and Thiols
- Aldehydes and Ketones

2010-J-10:

Carbohydrates

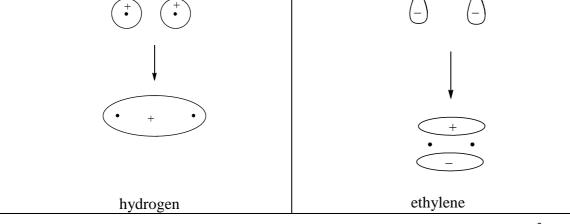
2010-J-11:

• Carbohydrates

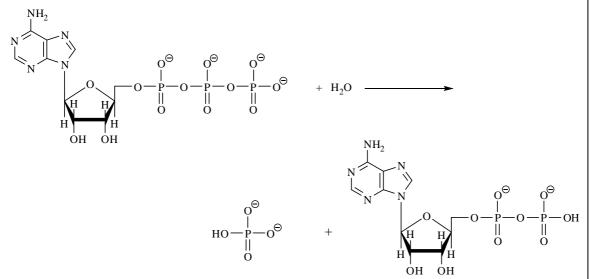
2010-J-12:

• Amino Acids, Peptides and Proteins

Marks Glucose labelled with ¹¹C is used to monitor brain function in positron emission 2 tomography (PET) scans. Identify the missing particles in the following nuclear reactions showing the synthesis and decay of ${}^{11}C$. $^{14}_{7}N + ^{1}_{1}H \rightarrow ^{11}_{6}C + |^{4}_{2}He$ $^{11}_{6}C \rightarrow$ ${}^{11}_{5}$ B $+ {}^{0}_{1}e$ 5 • The intense yellow light emitted from a sodium street lamp has a wavelength of $\lambda = 590$ nm. The light is emitted when an electron moves from a 3p to a 3s orbital. What is the energy of (a) one photon and (b) one mole of photons of this light? The energy of a photon with wavelength λ is given by $E = hc / \lambda$. Hence: $E = (6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1}) / (590 \times 10^{-9} \text{ m}) = 3.4 \times 10^{-19} \text{ J}$ This is the energy per photon. The energy per mole is therefore: $E = (6.022 \times 10^{23} \text{ mol}^{-1}) \times (3.4 \times 10^{-19} \text{ J}) = 2.0 \times 10^{2} \text{ kJ mol}^{-1}$ (a) Answer: 3.4×10^{-19} J (b) Answer: 2.0×10^2 kJ mol⁻¹ Sketch the shape of a 3s and a 3p orbital and label any spherical nodes that may be present. 3s orbital 3*p* orbital nodes node


What does a node represent?

3s orbital


A node represents the region where there is zero probability of finding the electron.

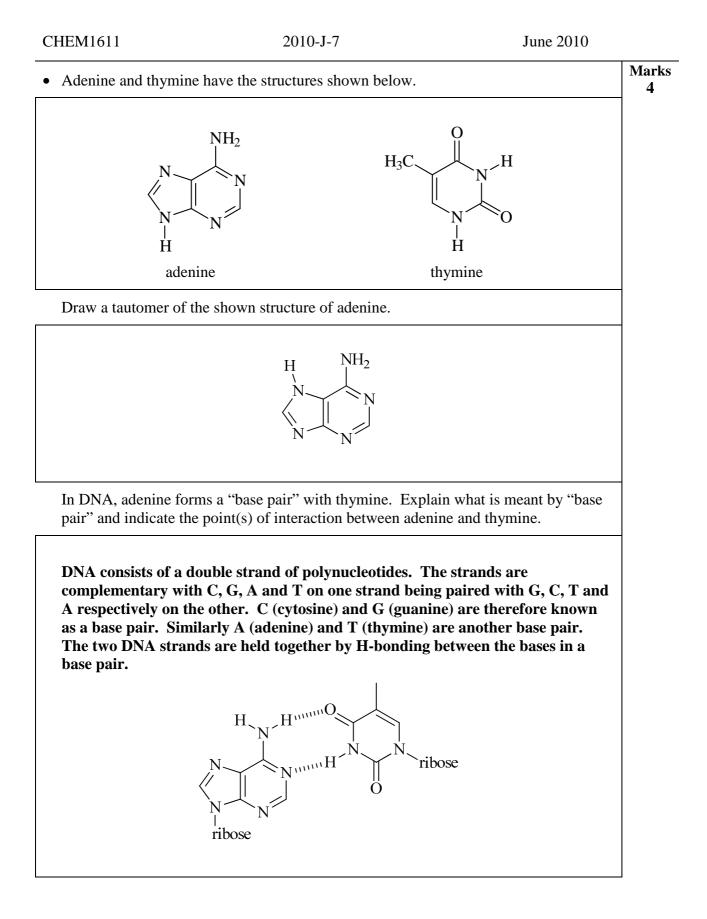
3p orbital

• Consider the σ -bond of a hydrogen molecule and the π -bond of ethylene (H₂C=CH₂). Sketch the shapes of the molecular orbitals of these bonds and the shapes of the atomic orbitals from which they arise.

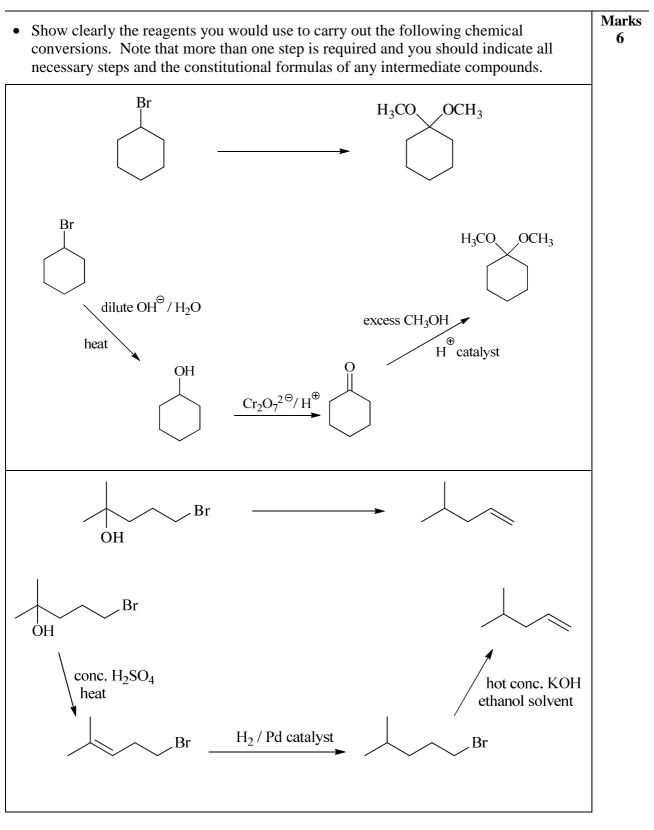
• ATP is used as an energy source in the body. Hydrolysis releases ADP, HPO_4^{2-} and energy, according to the equation:

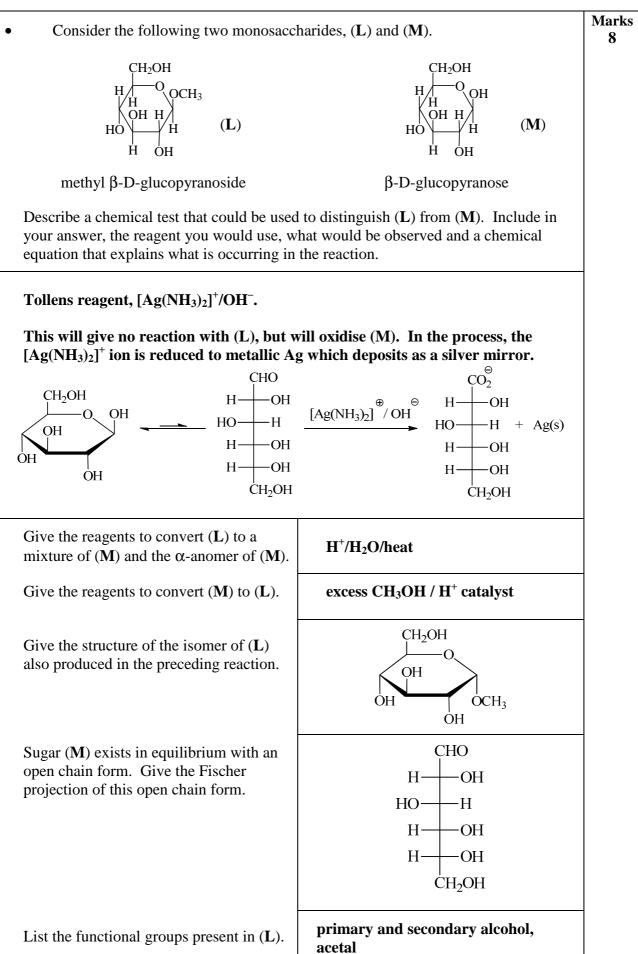
Suggest two reasons why this reaction is a good energy source.

There is an increase in resonance stabilisation energy when a free HPO_4^{2-} ion is produced.

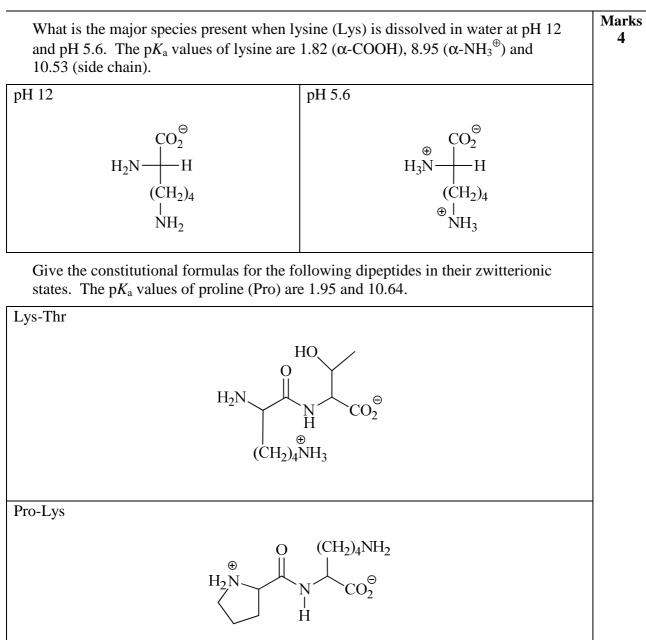

ATP is a high energy molecule due to the 4 negative charges near each other. This is reduced when it's converted to ADP which has only 2 close negative charges. Marks

2


Marks Glycine, NH₂CH₂COOH, is the simplest of all naturally occurring amino acids. The 7 pK_a of the acid group is 2.35 and the pK_a associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4. $\stackrel{\oplus}{\operatorname{H_3N}} \xrightarrow{\operatorname{CO}_2}^{\ominus}$ This pH is much greater than the pK_a value of the acid group: it is deprotonated. This pH is much *lower* than the pK_a value of the amino group: it is *protonated*. Use your structure to illustrate the concept of resonance. 0[⊖] Ð Ð H₃N, H₃N What are the hybridisation states and geometries of the two carbon atoms and the nitrogen atom in glycine? The carbon on the acid group is sp^2 hybridised and the geometry is trigonal planar. The carbon on the CH₂ group is sp^3 hybridised and the geometry is tetrahedral. The nitrogen is sp^3 hybridised and the geometry is tetrahedral. Propionic acid, CH₃CH₂COOH, has a melting point of -20.7 °C while glycine has a melting point of 292 °C. Suggest a reason why these two molecules have such different melting points. Propionic acid has strong hydrogen bonds, giving it a relatively high melting point. However, glycine has very strong ionic bonds between the NH_3^+ and CO_2^- groups giving it *very* high melting point.


Marks • Explain the terms 'weak' and 'strong' and the terms 'dilute' and 'concentrated' in the 2 context of acids and bases. A weak acid or base is one which only partially dissociates in water: e.g. $CH_3COOH(aq) - CH_3CO_2(aq) + H^+(aq)$ A strong acid or base is one which completely dissociates in water: e.g. HCl(aq) \rightarrow H⁺(aq) + Cl⁻(aq) Concentrated and dilute are terms that can be used in reference to any solute, describing the number of moles of solute relative to the volume of solvent. A concentrated solution has a high solute : solvent ratio, whilst a dilute solution has a low solute:solvent ratio. Hydrogen bond strength increases in the order N-H:...N < O-H:...O < F-H:...F. 2 Use this information and the data given in the table to explain the differences in boiling point of ammonia, water and hydrogen fluoride. Compound NH_3 H_2O HF Boiling point / °C -33100 20 NH₃ and HF both have two H-bond per molecule and their boiling points are in the expected order - HF has the stronger H-bonds and the higher boiling point. H₂O has 4 H-bonds per molecule, so although the bonds are not as strong as those of HF, there are twice as many of them. As a result the boiling point of H₂O is greater than that of HF.

			Marks
• Complete the following table. Make sure you complete the name of the starting material where indicated.			11
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	HBr / CCl4 (solvent)	Br	
ОН	1. NaOH 2. CH ₃ I	OCH ₃	
Name: (E)-2-pentene	H ₂ /Pd		
H_OH	$\mathrm{Cr_2O_7}^{2\Theta}/\mathrm{H}^{\oplus}$		
O Cl	excess CH ₃ NH ₂	$+ CH_3^{\oplus}NHCH_3$	
	$\operatorname{H}^{\oplus}/\operatorname{H}_2\operatorname{O}/\operatorname{heat}$	ноон	
Name: cyclohexanone	HOOH + H [⊕] catalyst		



Marks • The tropane alkaloid (-)-hyoscyamine is found in certain plants of the Solanaceae 7 family. It is an anticholinergic agent that works by blocking the action of acetylcholine at parasympathetic sites in smooth muscle, secretory glands and the central nervous system. H_CH₂OH 0 Give the molecular formula of (-)-hyoscyamine. C₁₇H₂₃O₃N List the functional groups present in (-)-hyoscyamine. amine, alcohol, ester, aromatic ring (arene) Hydrolysis of (-)-hyoscyamine results in two fragments, tropine and tropic acid. Draw each of these fragments. tropine tropic acid H CH₂OH H_3 HC OH What is the stereochemistry at the tropic acid stereocentre? Write (R) or (S). **(S)** Is tropine optically active? Explain your answer. No. It is a *meso*-isomer (*i.e.* has a plane of symmetry) and therefore optically inactive. It is superimposable on its mirror image.

Marks • Tuftsin is a tetrapeptide (Thr-Lys-Pro-Arg) produced by enzymatic cleavage of the 6 Fc-domain of the heavy chain of immunoglobulin G. It is mainly produced in the spleen and its activity is related primarily to immune system function. H N//, H_2N ЮH Ô Ò tuftsin NH NH NH₂ NH₂ HN HO Draw the Fischer projections of the four L-amino acids that result from the acid hydrolysis of tuftsin. COOH Ð COOH H₃N ·Н Ð -H H_3N -OH H- $(CH_{2})_{4}$ ĊH3 ⊕ [|]NH₃ COOH Ð -H H₃N-COOH Ð (ĊH₂)₃ -H H_2N NH \oplus H₂N NH_2

