Click on the links for resources on each topic.

2012-J-2:

- Atomic Structure
- The Periodic Table

2012-J-3:

- Chemical Bonding
- The Shapes of Molecules
- Acids and Bases

2012-J-4:

- Chemical Bonding
- The Shapes of Molecules

2012-J-5:

- Atomic Structure
- Chemical Bonding

2012-J-6:

- Alkenes
- Alcohols, Phenols, Ethers and Thiols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2012-J-7:

- Introduction to Organic Chemistry
- Stereochemistry

2012-J-8:

- Alkenes
- Aldehydes and Ketones
- Alcohols, Phenols, Ethers and Thiols
- Organic Halogen Compounds

2012-J-9:

- Carbohydrates

2012-J-10:

- Amino Acids, Peptides and Proteins

2012-J-11:

- Amino Acids, Peptides and Proteins

2012-J-12:

- Heterocyclic Compounds
- ${ }^{11} \mathrm{C}$ is used in positron emission tomography - PET. It is synthesised by bombarding $\mathrm{a}^{14} \mathrm{~N}$ target with protons. Write a nuclear equation for the formation of ${ }^{11} \mathrm{C}$ and thus identify the by-product of this synthesis.

$$
{ }_{7}^{14} \mathrm{~N}+{ }_{1}^{1} \mathrm{p} \rightarrow{ }_{6}^{11} \mathrm{C}+{ }_{2}^{4} \mathrm{He}
$$

${ }^{11} \mathrm{C}$ undergoes positron decay with a half life of 20.3 minutes. Write a nuclear equation to identify the product of this decay reaction.

$$
{ }_{6}^{11} \mathrm{C} \rightarrow{ }_{1}^{0} \beta^{+}+{ }_{5}^{11} \mathrm{~B}
$$

- Calculate the wavelength of light (in nm) emitted when an electron moves from the $n=4$ to $n=2$ energy levels in a hydrogen atom.

The energy of an orbital in an 1-electron atom or ion is given by

$$
E_{n}=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)
$$

The energy difference between two levels is therefore:

$$
\Delta E=E_{n 1}-E_{n 2}=\left[-Z^{2} E_{\mathrm{R}}\left(1 / n_{1}^{2}\right)\right]-\left[-Z^{2} E_{\mathrm{R}}\left(1 / n_{2}^{2}\right)\right]=Z^{2} E_{\mathrm{R}}\left(1 / n_{2}^{2}-1 / n_{1}^{2}\right)
$$

The energy emitted when an electron moves from $n=4$ to $n=2$ for H with $Z=1$ is therefore:

$$
\begin{aligned}
\Delta E & =(1)^{2} E_{\mathrm{R}}\left(1 / 2^{2}-1 / 4^{2}\right) \\
& =E_{\mathrm{R}} \times(3 / 16)=(3 / 16) \times 2.18 \times 10^{-18} \mathrm{~J}=4.09 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Using $E=h c / \lambda$, this corresponds to a wavelength of:

$$
\begin{aligned}
\lambda=h c / E & =\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right) /\left(4.09 \times 10^{-19} \mathrm{~J}\right) \\
& =4.86 \times 10^{-7} \mathrm{~m} \\
& =486 \mathrm{~nm}
\end{aligned}
$$

Answer: $\mathbf{4 8 6} \mathbf{n m}$

What is the energy of this radiation (in $\mathrm{kJ} \mathrm{mol}^{-1}$)?
The energy of each photon is $\mathbf{4 . 0 9} \times \mathbf{1 0}^{\mathbf{- 1 9}} \mathbf{J}$. Therefore, per mol:

$$
\text { energy of radiation }=\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right) \times\left(4.09 \times 10^{-19} \mathrm{~J}\right)=246 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\text { Answer: } \mathbf{2 4 6} \mathbf{~ k J ~ m o l}^{-1}
$$

- Draw the Lewis structure of carbon dioxide and label the electron pairs as either ' σ-bond' or ' π-bond' or 'lone pair'.

What is the hybridisation of the carbon atom and the oxygen atoms?

C: $\boldsymbol{s p}$
O: $\boldsymbol{s} \boldsymbol{p}^{2}$

Does carbon dioxide have a permanent dipole moment? Explain your reasoning.

As oxygen is more electronegative than carbon. The shared electrons in this bond lie more towards the oxygen. Each $\mathrm{C}-\mathrm{O}$ bond is polar.

However, the symmetry of the molecule means that the $\mathbf{2}$ bond moments cancel each other. Overall, there is no permanent dipole moment.

- In a standard acid-base titration, 25.00 mL of 0.1043 M NaOH solution was found to react exactly with 28.45 mL of an HCl solution of unknown concentration. What is the pH of the unknown HCl solution at $25^{\circ} \mathrm{C}$?

The reaction follows the equation $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ so that the number of moles of H^{+}that reacts is equal to the number of moles of OH^{-}.

For OH^{-}:

$$
\begin{aligned}
\text { number of moles } & =\text { concentration } \times \text { volume } \\
& =0.1043 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.02500 \mathrm{~L}=0.002608 \mathrm{~mol}
\end{aligned}
$$

This is equal to the number of moles of $\mathbf{H}^{+}(\mathrm{aq})$ in 28.45 mL , so:

$$
\text { concentration of } \begin{aligned}
\mathrm{H}^{+}(\mathrm{aq}) & =\text { number of moles / volume } \\
& =0.002608 \mathrm{~mol} / 0.02845 \mathrm{~L}=0.09165 \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$

Using $\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}(\mathrm{aq})\right]$:

$$
\mathrm{pH}=-\log _{10}(0.09165)=1.04
$$

$$
\mathrm{pH}=\mathbf{1 . 0 4}
$$

- Complete the following table, include resonance structures if appropriate. The central atom is underlined.

Formula	PCl_{5}	SOCl_{2}	HCOO^{-}
Lewis structure			
Arrangement of electron pairs around the underlined atom	trigonal bipyramidal	tetrahedral	trigonal planar
Molecular geometry	trigonal bipyramidal	trigonal pyramidal	trigonal planar
Intermolecular forces present	dispersion	dispersion and dipole-dipole	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Sketch the shape of a $3 p_{x}$ orbital.

品

Sketch the radial probability $\left(\psi^{2}\right)$ of an electron in a $3 p_{\mathrm{x}}$ orbital.

Sketch the shape of the σ orbital formed by overlap of a $3 p_{x}$ orbital and an s orbital. Clearly show the position of the two nuclei.

- Complete the following table. Make sure you complete the name of the starting material where indicated.

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	$\mathrm{HBr} / \mathrm{CCl}_{4}$ (solvent)	
	$\begin{aligned} & \text { 1. } \mathrm{NaOH} \\ & \text { 2. } \mathrm{CH}_{3} \mathrm{I} \end{aligned}$	
	1. Mg / dry ether 2. CO_{2} 3. $\mathrm{H}^{\oplus} / \mathrm{H}_{2} \mathrm{O}$	
 Name: 3-hydroxybutanal	1. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ OH^{-} 2. H^{+}	
	excess $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
 Name: 1-propyl acetate	3 M NaOH	
$\overbrace{S-S}^{>}$	$\mathbf{Z n} / \mathbf{H}^{+}$	

- Methylphenidate, also known as Ritalin, is a psychostimulant drug approved for treatment of attention-deficit disorder. It belongs to the piperidine class of compounds and increases the levels of dopamine and norepinephrine in the brain through reuptake inhibition of the monoamine transporter.

Give the molecular formula of methylphenidate.
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$

List the functional groups present in methylphenidate.

Aromatic ring, ester, secondary amine

How many stereogenic (chiral) centres are there in methylphenidate?
2
Using a stereogenic centre you have identified, draw the (R)-configuration of that centre.

Ritalin is generally sold as the hydrochloride salt. Draw the structure of this salt and suggest why this is the preferred compound for sale.

The hydrochloride salt is soluble in water, which generally means better bioavailability.

Salt will have better stability - amines prone to aerial oxidation.

- Show clearly the reagents you would use to carry out the following chemical conversions. Note that more than one step is required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds.

- The open chain form of D-talose is in equilibrium with two pyranose forms (\mathbf{L}) and (M). Draw Haworth projections of (L) and (M).
(L)

(M)

D-talose

Give the Haworth stereoformula of one of the products obtained when D-talose is treated with excess methanol in the presence of an acid catalyst.

Concentrated HNO_{3} oxidises aldehydes and primary alcohols to carboxylic acids, but does not oxidise secondary alcohols. Treatment of either D-talose or the aldohexose D-altrose with concentrated HNO_{3} gives the diacid (N). Give the Fischer projection of D-altrose.

Draw the Haworth stereoformula of a non-reducing disaccharide formed from D-talose.

- Cholecystokinin tetrapeptide (CCK-4), (Phe-Asp-Met-Trp) is a peptide fragment derived from the larger peptide hormone cholecystokinin. Unlike cholecystokinin, which has a variety of roles in the gastrointestinal and central nervous systems, CCK-4 acts primarily in the brain as an anxiogenic.

Draw the Fischer projections of the four L-amino acids that result from the acid hydrolysis of CCK-4.

THIS QUESTION CONTINUES ON THE NEXT PAGE.

What is the major species present when aspartic acid (Asp) is dissolved in water at pH 12 and pH 1? The $\mathrm{p} K_{\mathrm{a}}$ values of aspartic acid are $1.88(\alpha-\mathrm{COOH}), 9.60\left(\alpha-\mathrm{NH}_{3}{ }^{\circ}\right)$ and 3.65 (side chain).

Give the constitutional formulas for the following dipeptides in their zwitterionic states.
Trp-Asp

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Shown below is the structure of caffeine.

Draw the structure of a 10π-electron aromatic resonance contributor to the structure of caffeine.

Only one of the nitrogen atoms in caffeine is basic. Indicate which of the nitrogen atoms is basic and explain why it is basic and why the others are not.

N^{1} is $s p^{2}$ hybridised. The "lone pair" is in the unhybridised p orbital and is part of the aromatic system so is unavailable to act as a proton acceptor.
\mathbf{N}^{2} is also $s \boldsymbol{p}^{2}$ hybridised, but here the lone pair is in the $s p^{2}$ hybrid orbital pointing away from the ring system. It is able to act as a proton acceptor, so this \mathbf{N} is basic.

The "lone pairs" on the two N 's in the 6-membered ring are (at least partially) involved in the resonance stabilisation of the amides and the aromatic system as shown in the first part of this question. These electrons are delocalised and hence not available to act as proton acceptors.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

