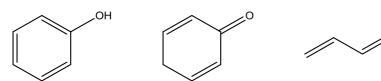
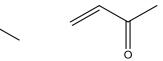

CHEM1611 Spectroscopy Workshop – Answers to Critical Thinking Questions

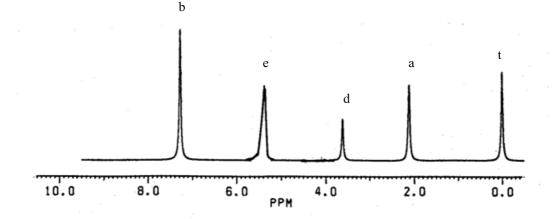
The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.


Model 1: Infrared (IR) Spectroscopy


1. See below.

Model 2: UV-Visible Spectroscopy

1. See below.

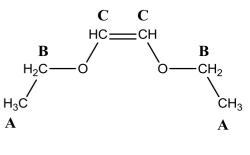

- 2. All of the above.
- 3. Restricted to the identification of conjugation.

Model 3: ¹H NMR Spectroscopy - Chemical Shifts

1. The molecule on the left has 3 types of H atom and the molecule on the right has 7 types of H atom.

2. The molecule on the left will give 3 signals and the molecule on the right will give 7 signals.

Model 4: ¹H NMR Spectroscopy - Coupling

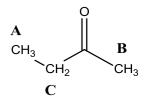

- 1. Number of peaks = n + 1 where *n* is the number of hydrogen atoms on adjacent atoms which are not equivalent to the ¹H giving rise to the signal.
- 2. None, or the adjacent hydrogen atoms are in the same environment (equivalent).
- 3. A septet with intensity ratio 1: 6: 15: 20: 15: 6: 1.

Model 5: ¹H NMR Spectroscopy - Integration

1. There are 3 signals due to the 3 types of 1 H environment: A, B and C.

The signal at 1.3 ppm is due to the 6 1 H in environment A: relative integral = 3. The signal is split into a 1:2:1 triplet due to coupling to the 2 1 H on the neighbouring CH₂ group (B).

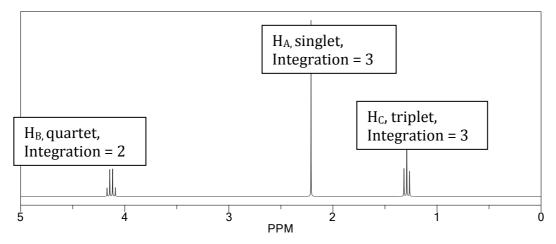
The signal at 4.5 ppm is due to the 4 ¹H in environment B: relative integral = 2. The signal has a higher chemical shift than that for group A due to the presence of the electronegative O atom. The signal is split into a 1:3:3:1 quartet due to coupling to the 3 ¹H on the neighbouring CH₃ group (A).


The signal at ~5.3 ppm is due to the 2 ¹H in environment C: relative integral = 1. The signal has a higher chemical shift than that for group A or B as the ¹H atoms are on a sp^2 C atom that is bonded to an electronegative O atom. There are no ¹H on the neighbouring atoms, except the other equivalent ¹H atom, so no splitting due to coupling is observed.

Note that the relative number of hydrogen atoms in each environment given by the integration is 3:2:1, but the actual number of hydrogen atoms is 6:4:2.

2. There are 3 signals due to the 3 types of 1 H environment: A, B and C.

The signal at ~1.1 ppm is due to the 3 1 H in environment A: integral = 3. The signal is split into a 1:2:1 triplet due to coupling to the 2 1 H on the neighbouring CH₂ group (C).

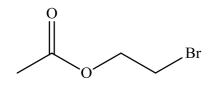

The signal at 2.1 ppm is due to the 3 1 H in environment B: integral = 3. The signal has a higher chemical shift than that for group A due to the presence of the electronegative O atom. There are no 1 H on the neighbouring atoms, so no splitting due to coupling is observed.

The signal at ~2.5 ppm is due to the 2 ¹H in environment C: integral = 2. The signal has a higher chemical shift than that for group A due to the presence of the electronegative O atom. The signal is split into a 1:3:3:1 quartet due to coupling to the 3 ¹H on the neighbouring CH₃ group (A).

3. H_B have the highest shift since they are closest to the electronegative O atoms. There are two H_B atoms so the signal has an integral of 2. The H_B atoms are coupling to $3 \times H_C$ atoms giving rise to a (n + 1) = (3 + 1) = 4 line multiplet (a *quartet*).

 H_C have the lowest shift since they are further from the electronegative O atoms. There are three H_B atoms so the signal has an integral of 3. The H_C atoms are coupling to $2 \times H_B$ atoms giving rise to a (n + 1) = (2 + 1) = 3 line multiplet (a *triplet*).

Model 6: Mass Spectrometry


1.	m / z	Fragment
	99	M+ peak: containing one 13 C (1% chance).
	98	Molecular ion – $C_6H_{10}O$
	83	C ₅ H ₇ O (loss of –CH ₃ - 15 mass units)
	55	C ₄ H ₇ (loss of –CH ₃ CO - 43 mass units)
	43	C ₃ H ₇ (loss –of CH ₃ COC – 45 mass units)
	39	C ₃ H
	29	CHO or C ₂ H ₄

2. Acetonitrile: $CH_3C\equiv N$.

Model 7: Combined Use of Mass Spectrometry and IR, UV-Visible and NMR Spectroscopy to Identify Unknown Compounds.

1. 3-methylbutan-2-one:

2. 2-bromoethyl acetate:

