1. (a) HNO_{3} is a very strong acid so the $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ ion is not basic. A solution of KNO_{3} contains $\mathrm{K}^{+}(\mathrm{aq})$ and $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ ions and is neutral.
(b) $\quad \mathrm{FeCl}_{3}$ dissolves to give $\mathrm{Fe}^{3+}(\mathrm{aq})$ and $3 \mathrm{Cl}^{-}(\mathrm{aq})$ ions. The small and high charged Fe^{3+} ion is surrounded by six water molecules in aqueous solution and acts as a weak acid because of the equilibrium:

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \rightleftharpoons\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathbf{l})
$$

The Cl^{-}ion, the anion of a strong acid HCl , does not react and stays in solution as $\mathrm{Cl}^{-}(\mathrm{aq})$. The solution is therefore acidic.
(c) $\quad \mathbf{C a}(\mathbf{O H})_{2}$ is a strong base and dissolves to give $\mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ ions. A solution of $\mathrm{Ca}(\mathbf{O H})_{2}$ is thus basic.
(d) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ dissolves to give $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$, the anion of a strong acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, and $\mathrm{NH}_{4}{ }^{+}$, the cation of a weak base, $\mathrm{NH}_{3} . \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ does not react but $\mathrm{NH}_{4}{ }^{+}$is a weak acid and the solution is acidic because of the equilibrium:

$$
\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{l})
$$

(e) $\quad \mathrm{NaN}_{3}$ dissolves to give $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{N}_{3}{ }^{-}(\mathrm{aq})$, the anion of a weak acid. This anion is thus a weak base and the solution is basic because of the equilibrium:

$$
\mathrm{N}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HN}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

(f) $\quad \mathrm{BaCl}_{2}$ dissolves to give $\mathrm{Ba}^{2+}(\mathrm{aq})$ and $2 \mathrm{Cl}^{-}(\mathrm{aq})$ ions. $\mathbf{H C l}$ is a very strong acid so the $\mathrm{Cl}^{-}(\mathrm{aq})$ ion is not basic. The Ba^{2+} ion is large and is not acidic.
2. The solubility equilibrium is:

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})
$$

for which the solubility product is:

$$
K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]^{3}\left[\mathrm{PO}_{4}{ }^{2-}(\mathrm{aq})\right]^{2}
$$

(a) If the molar solubility is equal to S then, from the equilibrium equation, $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]=3 S$ and $\left[\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})\right]=2 S$ and the solubility product becomes:

$$
\begin{aligned}
& K_{\text {sp }}=\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})\right]^{2}=(3 S)^{3} \times(2 S)^{2}=108 S^{5}=1.3 \times 10^{-32} \\
& \text { molar solubility }=S=1.6 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

The molar mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is:

$$
(3 \times 40.08(\mathrm{Ca}))+2 \times(30.97(\mathrm{P})+4 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{~mol}^{-1}=310.18 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Therefore, the solubility in g^{-1} is:

$$
\begin{aligned}
\text { solubility } & =\text { molar solubility } \times \text { formula mass } \\
& =\left(1.6 \times 10^{7} \mathbf{~ m o l ~ L}^{-1}\right) \times\left(\mathbf{3 1 0 . 1 8} \mathrm{g} \mathrm{~mol}^{-1}\right)=5.0 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

(b) $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$ dissolves completely to give $\left[\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})\right]=0.20 \mathrm{M}$. The amount of $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$ from $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is tiny in comparison to that from $\mathrm{Na}_{3} \mathrm{PO}_{4}$. Denoting the molar solubility by S again, $K_{\text {sp }}$ is, as above:

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})\right]^{2}=(3 S)^{3} \times\left(\left[\mathrm{PO}_{4}{ }^{2-}(\mathrm{aq})\right]\right)^{2} \\
& 27 S^{3} \times(0.20)^{2}=1.3 \times 10^{-32} \text { so molar solubility }=S=2.3 \times 10^{-11} \mathrm{M}
\end{aligned}
$$

3. The solubility equilibrium for $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ is:

$$
\left.\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})\right) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

for which the solubility product is:

$$
K_{\text {sp }}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})\right]=2 \times 10^{-5}
$$

$\mathrm{As}\left[\mathrm{Ag}^{+}\right]=0.01 \mathrm{M}$ and $\left[\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})\right]=0.01 \mathrm{M}$ before mixing and equal volumes are mixed, the concentrations will halve: $\left[\mathrm{Ag}^{+}\right]=0.005 \mathrm{M}$ and $\left[\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})\right]=0.005 \mathrm{M}$ the reaction quotient or ionic product is

$$
Q_{\mathrm{sp}}=(0.005)^{2} \times(0.005)=1 \times 10^{-7}
$$

As $Q_{\text {sp }}<K_{\text {sp }}$, the equilibrium will proceed to the right and the solid will dissolve no precipitate will form.
4.

(a) KMnO_{4}	$\mathrm{K}^{+} \mathbf{M n}^{\mathbf{7 +}} \mathbf{4 0}{ }^{\mathbf{2 -}}$	Mn is +7
(b) $\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{S}^{6+} \mathbf{4 O}^{\mathbf{2 -}}$	S is +6
(c) $\mathrm{Na}_{2} \underline{\mathrm{O}}_{2}$	$2 \mathrm{Na}^{+} \mathrm{2O}^{-}$	0 is -1 (oxygen in a peroxide)
(d) MgH_{2}	$\mathbf{M g}^{\mathbf{2 +}} \mathbf{2 H}{ }^{-}$	\mathbf{H} is $\mathbf{- 1}$ (hydrogen as a hydride with a metal)
(e) NH_{4}^{+}	$\mathbf{N}^{\mathbf{3 -}} \mathbf{4 H}{ }^{+}$	H is $\mathbf{+ 1}$ (hydrogen in combination with a non-metal)
(f) $\underline{\mathrm{BrF}}_{3}$	$\mathrm{Br}^{\mathbf{3 +}} \mathbf{3 F -}$	Br is +3
(g) $\left[\underline{\mathrm{Ni}}\left(\mathrm{NH}_{3}\right)_{6}\right.$	$]^{2+} \quad \mathbf{N i}^{\mathbf{2 +}} \mathbf{6} \mathbf{N H}_{3}$	Ni is $\mathbf{+ 2}$ (ammonia is a neutral ligand)
(h) $\mathrm{K}_{4}[\underline{\mathrm{Fe}}(\mathrm{CN}$	$\left.)_{6}\right] \quad 4 \mathrm{~K}^{+} \mathrm{Fe}^{\mathbf{2 +}}$	$\mathbf{F e}$ is $+\mathbf{2}$ (cyanide is an anionic ligand)

5. $K_{\text {stab }}$ refers to the equilibrium:

$$
\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})
$$

As $K_{\text {stab }}=8 \times 10^{8}$ and is very large, the reaction essentially goes to completion. The reaction requires a $4: 1$ ratio $\mathrm{NH}_{3}: \mathrm{Zn}^{2+}(\mathrm{aq})$ ions and as 3.0 mol of NH_{3} and 0.10 mol of $\mathrm{Zn}^{2+}(\mathrm{aq})$ is present, NH_{3} is in excess.

Let the tiny amount of $\mathrm{Zn}^{2+}(\mathrm{aq})$ and its concentration in 1.5 L after complexation be:

$$
\begin{aligned}
& \text { amount of } \mathrm{Zn}^{2+}(\mathrm{aq})=x \mathrm{~mol} \text { and } \\
& {\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]=\frac{\text { number of moles }}{\text { volume }}=\frac{x}{1.5} \mathrm{M}}
\end{aligned}
$$

The amount of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\mathbf{2 +}}(\mathrm{aq})$ formed is therefore:

$$
\text { amount of }\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})=(0.10-x) \mathrm{mol}
$$

As \boldsymbol{x} is so small, this amount and hence the concentration can be approximated as:

$$
\begin{aligned}
& \text { amount of }\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})=(0.10-x) \sim 0.10 \mathrm{~mol} \\
& {\left[\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})\right] \sim \frac{0.10}{1.5} \mathrm{M}}
\end{aligned}
$$

Formation of 0.10 mol of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})$ requires 0.40 mol of ammonia, leaving:

$$
\begin{aligned}
& \text { amount of } \mathrm{NH}_{3}=(3.0-4 \times 0.10)=2.6 \mathrm{~mol} \text { and } \\
& {\left[\mathrm{NH}_{3}(\mathrm{aq})\right]=\frac{2.6}{1.5} \mathrm{M}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& K_{\text {stab }}=\frac{\left[\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]\left[\mathrm{NH}_{3}(\mathrm{aq})\right]^{4}}=\frac{\left(\frac{0.10}{1.5}\right)}{\left(\frac{x}{1.5}\right)\left(\frac{2.6}{1.5}\right)^{4}}=8 \times 10^{8} \\
& x=1.4 \times 10^{-11} \mathrm{~mol} \text { and }\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]=9.2 \times 10^{-12} \mathrm{M}
\end{aligned}
$$

6. (a) $100 \mathbf{m L}$ of blood contains 15.0 g of haemoglobin corresponding to:

$$
\begin{aligned}
\text { number of moles of haemoglobin } & =\frac{\text { mass }}{\text { molar mass }}=\frac{15.0 \mathrm{~g}}{6.45 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}} \\
& =2.33 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

As each haemoglobin can bind 4 molecules of O_{2} :

$$
\text { number of moles of } \mathrm{O}_{2}=4 \times 2.33 \times 10^{-4} \mathrm{~mol}=9.30 \times 10^{-4} \mathrm{~mol}
$$

As $101.3 \mathrm{kPa}=1 \mathrm{~atm}$, using the ideal gas equation, $P V=n R T$, at 311 K and 101.3 kPa , this will occupy a volume of:

$$
\begin{aligned}
V & =\frac{n R T}{P}=\frac{\left(9.30 \times 10^{-4} \mathrm{~mol}\right) \times\left(0.08206 \mathrm{Latm}^{-1} \mathrm{~mol}^{-1}\right) \times(311 \mathrm{~K})}{(1 \mathrm{~atm})} \\
& =0.0237 \mathrm{~L}
\end{aligned}
$$

(b) $\mathbf{1 k g}$ of haemoglobin corresponds to:

$$
\text { number of moles of haemoglobin }=\frac{1000 \mathrm{~g}}{6.45 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}}=0.0155 \mathrm{~mol}
$$

3.4 g of iron corresponds to:

$$
\text { number of moles of iron }=\frac{\text { mass }}{\text { atomic mass }}=\frac{3.4 \mathrm{~g}}{55.85 \mathrm{~g} \mathrm{~mol}^{-1}}=0.061 \mathrm{~mol}
$$

Therefore, the number of iron atoms per haemoglobin is $=\frac{0.061}{0.0155}=4$
Each iron atom binds one $\mathbf{O}_{\mathbf{2}}$ molecule.
(c) $\quad \mathrm{Fe}$ is in Group 8 so has 8 valence electrons with a configuration [Ar]4s ${ }^{2} 3 d^{6}$. Possible oxidation states include $\mathrm{Fe}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{4+}$ and Fe^{6+}. As the 4 s electrons are lost first, these oxidation states correspond to the following electron arrangments:

number of unpaired electrons
4
5
4
5
4
2

The magnetic studies are consistent with an Fe^{2+} or an Fe^{4+} being present. Fe^{2+} is much more common and it is this oxidation state which is actually present in haemoglobin.

