CHEM1612 Answers to Problem Sheet 7

- 1. (a) HNO₃ is a very strong acid so the NO₃ (aq) ion is not basic. A solution of KNO₃ contains $K^+(aq)$ and NO₃ (aq) ions and is neutral.
 - (b) FeCl₃ dissolves to give $Fe^{3+}(aq)$ and 3CI(aq) ions. The small and high charged Fe^{3+} ion is surrounded by six water molecules in aqueous solution and acts as a weak acid because of the equilibrium:

$$[Fe(H_2O)_6]^{3+}(aq) + H_2O(l) \iff [Fe(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(l)$$

The Cl^{\cdot} ion, the anion of a strong acid HCl, does not react and stays in solution as Cl^{\cdot}(aq). The solution is therefore acidic.

- (c) $Ca(OH)_2$ is a strong base and dissolves to give $Ca^{2+}(aq)$ and OH'(aq) ions. A solution of $Ca(OH)_2$ is thus basic.
- (d) $(NH_4)_2SO_4$ dissolves to give $SO_4^{2-}(aq)$, the anion of a strong acid, H_2SO_4 , and NH_4^+ , the cation of a weak base, NH_3 . $SO_4^{2-}(aq)$ does not react but NH_4^+ is a weak acid and the solution is acidic because of the equilibrium:

$$NH_4^+(aq) + H_2O(l) \iff NH_3(aq) + H_3O^+(l)$$

(e) NaN₃ dissolves to give Na⁺(aq) and N₃⁻(aq), the anion of a weak acid. This anion is thus a weak base and the solution is basic because of the equilibrium:

$$N_3^{-}(aq) + H_2O(l) \iff HN_3(aq) + OH^{-}(aq)$$

- (f) BaCl₂ dissolves to give $Ba^{2+}(aq)$ and 2Cl⁻(aq) ions. HCl is a very strong acid so the Cl⁻(aq) ion is not basic. The Ba^{2+} ion is large and is not acidic.
- 2. The solubility equilibrium is:

$$Ca_3(PO_4)_2(s) \implies 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$$

for which the solubility product is:

 $K_{\rm sp} = [{\rm Ca}^{2+}({\rm aq})]^3 [{\rm PO}_4^{2-}({\rm aq})]^2$

(a) If the molar solubility is equal to S then, from the equilibrium equation, $[Ca^{2+}(aq)] = 3S$ and $[PO_4^{3-}(aq)] = 2S$ and the solubility product becomes:

$$K_{\rm sp} = [{\rm Ca}^{2+}({\rm aq})]^3 [{\rm PO}_4^{3-}({\rm aq})]^2 = (3S)^3 \times (2S)^2 = 108S^5 = 1.3 \times 10^{-32}$$

molar solubility = $S = 1.6 \times 10^{-7}$ M

The molar mass of Ca₃(PO₄)₂ is:

 $(3 \times 40.08 (Ca)) + 2 \times (30.97 (P) + 4 \times 16.00 (O)) \text{ g mol}^{-1} = 310.18 \text{ g mol}^{-1}$

Therefore, the solubility in g L^{-1} is:

solubility = molar solubility × formula mass = $(1.6 \times 10^7 \text{ mol } \text{L}^{-1}) \times (310.18 \text{ g mol}^{-1}) = 5.0 \times 10^{-3} \text{ g } \text{L}^{-1}$

(b) Na₃PO₄ dissolves completely to give $[PO_4^{3-}(aq)] = 0.20$ M. The amount of PO₄³⁻(aq) from Ca₃(PO₄)₂ is tiny in comparison to that from Na₃PO₄. Denoting the molar solubility by *S* again, *K*_{sp} is, as above:

$$K_{\rm sp} = [{\rm Ca}^{2+}({\rm aq})]^3 [{\rm PO}_4^{3-}({\rm aq})]^2 = (3S)^3 \times ([{\rm PO}_4^{2-}({\rm aq})])^2$$
$$27S^3 \times (0.20)^2 = 1.3 \times 10^{-32} \text{ so molar solubility} = S = 2.3 \times 10^{-11} \text{ M}$$

3. The solubility equilibrium for $Ag_2SO_4(s)$ is:

$$Ag_2SO_4(s)$$
) \Longrightarrow $2Ag^+(aq) + SO_4^{-2}(aq)$

for which the solubility product is:

$$K_{\rm sp} = [{\rm Ag}^+({\rm aq})]^2 [{\rm SO_4}^{2-}({\rm aq})] = 2 \times 10^{-5}$$

As $[Ag^+] = 0.01$ M and $[SO_4^{2-}(aq)] = 0.01$ M before mixing and equal volumes are mixed, the concentrations will halve: $[Ag^+] = 0.005$ M and $[SO_4^{2-}(aq)] = 0.005$ M the reaction quotient or *ionic product* is

$$Q_{\rm sp} = (0.005)^2 \times (0.005) = 1 \times 10^{-7}$$

As $Q_{sp} < K_{sp}$, the equilibrium will proceed to the right and the solid will dissolve – no precipitate will form.

4.	(a) K <u>Mn</u> O ₄	$K^{+} Mn^{7+} 4O^{2-}$	Mn is +7		
	(b) <u>S</u> O ₄ ^{2–}	$S^{6+} 4O^{2-}$	S is +6		
	(c) Na ₂ O ₂	2Na ⁺ 2O ⁻	O is -1 (oxygen in a peroxide)		
	(d) M <u>gH</u> ₂	Mg ²⁺ 2H ⁻	H is -1 (hydrogen as a hydride with a metal)		
	(e) $N\underline{H}_4^+$	$N^{3-} 4H^+$	H is +1 (hydrogen in combination with a non-metal)		
	(f) <u>Br</u> F ₃	Br ³⁺ 3F ⁻	Br is +3		
	(g) [<u>Ni</u> (NH ₃) ₆	$[5]^{2+}$ Ni ²⁺ 6NH ₃	Ni is +2 (ammonia is a neutral ligand)		
	(h) K ₄ [<u>Fe</u> (CN	$()_6]$ 4K⁺ Fe²⁺ 6C	N Fe is +2 (cyanide is an anionic ligand)		

5. K_{stab} refers to the equilibrium:

 $Zn^{2+}(aq) + 4NH_3(aq) \implies [Zn(NH_3)_4]^{2+}(aq)$

As $K_{\text{stab}} = 8 \times 10^8$ and is *very* large, the reaction essentially goes to completion. The reaction requires a 4:1 ratio NH₃ : $\text{Zn}^{2+}(\text{aq})$ ions and as 3.0 mol of NH₃ and 0.10 mol of Zn²⁺(aq) is present, NH₃ is in excess.

Let the tiny amount of $Zn^{2+}(aq)$ and its concentration in 1.5 L after complexation be:

amount of $Zn^{2+}(aq) = x$ mol and

$$[Zn^{2+}(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{x}{1.5} \text{ M}$$

The amount of $[Zn(NH_3)_4]^{2+}(aq)$ formed is therefore:

amount of
$$[Zn(NH_3)_4]^{2+}(aq) = (0.10 - x) mol$$

As x is so small, this amount and hence the concentration can be approximated as:

amount of
$$[Zn(NH_3)_4]^{2+}(aq) = (0.10 - x) \sim 0.10 \text{ mol}$$

$$[[Zn(NH_3)_4]^{2+}(aq)] \sim \frac{0.10}{1.5} M$$

Formation of 0.10 mol of $[Zn(NH_3)_4]^{2+}(aq)$ requires 0.40 mol of ammonia, leaving:

amount of $NH_3 = (3.0 - 4 \times 0.10) = 2.6$ mol and

$$[\mathrm{NH}_3(\mathrm{aq})] = \frac{2.6}{1.5} \mathrm{M}$$

Hence,

$$K_{\text{stab}} = \frac{\left[\left[\text{Zn}(\text{NH}_{3})_{4}\right]^{2+}(\text{aq})\right]}{\left[\text{Zn}^{2+}(\text{aq})\right]\left[\text{NH}_{3}(\text{aq})\right]^{4}} = \frac{\left(\frac{0.10}{1.5}\right)}{\left(\frac{x}{1.5}\right)\left(\frac{2.6}{1.5}\right)^{4}} = 8 \times 10^{8}$$
$$x = 1.4 \times 10^{-11} \text{ mol and } \left[\text{Zn}^{2+}(\text{aq})\right] = 9.2 \times 10^{-12} \text{ M}$$

6.

(a) **100 mL of blood contains 15.0 g of haemoglobin corresponding to:**

number of moles of haemoglobin = $\frac{\text{mass}}{\text{molar mass}} = \frac{15.0 \text{ g}}{6.45 \times 10^4 \text{ g mol}^{-1}}$ = $2.33 \times 10^{-4} \text{ mol}$

As each haemoglobin can bind 4 molecules of O₂:

number of moles of
$$O_2 = 4 \times 2.33 \times 10^{-4}$$
 mol = 9.30×10^{-4} mol

As 101.3 kPa = 1 atm, using the ideal gas equation, PV = nRT, at 311 K and 101.3 kPa, this will occupy a volume of:

$$V = \frac{nRT}{P} = \frac{(9.30 \times 10^{-4} \text{ mol}) \times (0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}) \times (311 \text{ K})}{(1 \text{ atm})}$$

= 0.0237 L

(b) **1 kg of haemoglobin corresponds to:**

number of moles of haemoglobin = $\frac{1000 \text{ g}}{6.45 \times 10^4 \text{ g mol}^{-1}} = 0.0155 \text{ mol}$

3.4 g of iron corresponds to:

number of moles of iron
$$= \frac{\text{mass}}{\text{atomic mass}} = \frac{3.4 \text{ g}}{55.85 \text{ g mol}^{-1}} = 0.061 \text{ mol}$$

Therefore, the number of iron atoms per haemoglobin is $=\frac{0.061}{0.0155}=4$

Each iron atom binds one O2 molecule.

(c) Fe is in Group 8 so has 8 valence electrons with a configuration $[Ar]4s^23d^6$. Possible oxidation states include Fe⁺, Fe²⁺, Fe³⁺, Fe⁴⁺ and Fe⁶⁺. As the 4s electrons are lost first, these oxidation states correspond to the following electron arrangments:

	4 <i>s</i>			3 <i>d</i>			number of unpaired electrons
Fe	$\uparrow\downarrow$	$\uparrow\downarrow$	1	↑	1	\uparrow	4
\mathbf{Fe}^+	\uparrow	↑↓	↑	\uparrow	1	↑	5
Fe ²⁺		↑↓	↑	↑	↑	↑	4
Fe ³⁺		↑	↑	↑	\uparrow	\uparrow	5
Fe ⁴⁺		↑	↑	↑	↑		4
Fe ⁶⁺		\uparrow	\uparrow				2

The magnetic studies are consistent with an Fe^{2+} or an Fe^{4+} being present. Fe^{2+} is much more common and it is this oxidation state which is actually present in haemoglobin.