Topics in the November 2007 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2007-N-2:

- Introduction to Chemical Energetics

2007-N-3:

- Chemical Equilibrium

2007-N-4:

- Chemical Equilibrium

2007-N-5:

- Solutions

2007-N-6:

- Introduction to Chemical Energetics
- Gas Laws
- Chemical Equilibrium

2007-N-7:

- Chemical Equilibrium

2007-N-8:

- Solubility
- Complexes

2007-N-9:

- Radiochemistry

2007-N-10:

- Redox Reactions and Introduction to Electrochemistry
- Acids and Bases

2007-N-11:

- Solubility
- Redox Reactions and Introduction to Electrochemistry

2007-N-12:

- Complexes
- Introduction to Colloids and Surface Chemistry

2007-N-13:

- Chemical Kinetics
- Anhydrous copper(II) sulfate is a white powder that reacts with water to give blue crystals of copper(II) sulfate-5-water.

$$
\mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

Calculate the standard enthalpy change for this reaction from the heats of solution.

Compound	$\Delta H^{\circ}{ }_{\text {solution }} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{CuSO}_{4}(\mathrm{~s})$	-66.5
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	+11.7

The two reactions in the table correspond to:
(1) $\mathrm{CuSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(2) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Taking (1) - (2) gives the required reaction:

(1) $\mathrm{CuSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}{ }^{-}(\mathrm{aq}) \quad \Delta H^{\circ}=-66.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ | $-(2)$ | $\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ | $\Delta H^{\circ}=-11.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ |
| :--- | :--- | :--- |
| $(1)-(2) \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ | $\Delta H^{\circ}=-78.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ | |

$$
\text { Answer: - } \mathbf{7 8 . 2} \mathbf{~ k J ~ m o l}{ }^{-1}
$$

- Using the given data, calculate ΔH° for the reaction: $\mathrm{H}(\mathrm{g})+\operatorname{Br}(\mathrm{g}) \rightarrow \mathrm{HBr}(\mathrm{g})$

Data:

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g}) & \Delta H^{\circ}=+436 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{~g}) & \Delta H^{\circ}=+193 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g}) & \Delta H^{\circ}=-72 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

The reaction corresponds to the combination:

$\mathrm{H}(\mathrm{g}) \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})$	$\Delta H^{\circ}=-1 / 2 \times(+436) \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{Br}(\mathrm{g}) \rightarrow 1 / 2 \mathrm{Br}_{2}(\mathrm{~g})$	$\Delta H^{\circ}=-1 / 2 \times(+193) \mathrm{kJ} \mathrm{mol}^{-1}$
$\underline{1 / 2} \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{g})$	$\Delta H^{\circ}=+1 / 2 \times(-72) \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathbf{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathbf{H B r}(\mathrm{g})$	$\Delta H^{\circ}=(-218)+(-96.5)+(-36)=-350 \mathrm{~kJ} \mathrm{~mol}^{-1}$
	$\Delta H^{\circ}=-350 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Consider the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\Delta H^{\circ}=-198.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\circ}=-187.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$.
Show that this reaction is spontaneous at $25^{\circ} \mathrm{C}$.
Using $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$,

$$
\begin{aligned}
\Delta G^{\circ} & =\left(-198.4 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)-((25+273) \mathrm{K}) \times\left(-187.9 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\
& =-142400 \mathrm{~J} \mathrm{~mol}^{-1}=-142.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

As $\Delta G^{\circ}<0$, the reaction is spontaneous.

If the volume of the reaction system is increased at $25^{\circ} \mathrm{C}$, in which direction will the reaction move?

An increase in volume corresponds to a decrease in pressure. According to Le Chatelier's principle, the reaction will shift to increase the pressure. It does this by favouring the side with a greater number of gaseous molecules:

The reaction will shift to the left ($\mathbf{3}$ moles of gas on the left, 2 moles of gas on the right).

Calculate the value of the equilibrium constant, K, at $25^{\circ} \mathrm{C}$.

Using $\Delta G^{\circ}=-R T \ln K$,

$$
-142.2 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times((25+273) \mathrm{K}) \times \ln K
$$

$$
K=9.170 \times 10^{24} \quad \text { (essentially complete conversion to products) }
$$

$$
K=9.170 \times \mathbf{1 0}^{\mathbf{2 4}} \quad \text { (no units) }
$$

Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?

The reaction is non-spontaneous when $\Delta G^{\circ}>0$, or when $\Delta H^{\circ}-T \Delta S^{\circ}>0$:

$$
\begin{aligned}
& \left(-198.4 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)-T \times\left(-187.9 \mathrm{~J} \mathrm{~mol}^{1}\right)>0 \\
& T>\frac{-198.4 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{-187.9 \mathrm{~J} \mathrm{~mol}^{-1}} \text { so } T>1055 \mathrm{~K}
\end{aligned}
$$

Note that, as demonstrated above, the reaction is spontaneous at 298 K and, as the reaction is exothermic, it becomes less favourable as the temperature increases (Le Chatelier's principle).

Answer: $\boldsymbol{T} \boldsymbol{>} \mathbf{1 0 5 5} \mathbf{K}$

- The first step in the metabolism of glucose in biological systems is the addition of a phosphate group in a dehydration-condensation reaction:

$$
\text { glucose }(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \text { [glucose phosphate] }(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The free energy change associated with this reaction is $\Delta G^{\circ}=13.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the hydrolysis of adenosine triphosphate, ATP^{4}, to adenosine diphosphate, ADP^{3-} :

$$
\operatorname{ATP}^{4-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{ADP}^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \quad \Delta G^{\circ}=-30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The overall reaction is thus:

$$
\text { glucose } \left.(\mathrm{aq})+\operatorname{ATP}^{4-}(\mathrm{aq}) \rightleftharpoons \text { [glucose phosphate] }\right]^{-}(\mathrm{aq})+\operatorname{ADP}^{3-}(\mathrm{aq})
$$

Calculate the equilibrium constant associated with this overall reaction at body temperature ($37^{\circ} \mathrm{C}$).

The overall reaction is the sum of the two reactions:

$\Delta G^{\circ}\left(\mathbf{k J ~ m o l}^{-1}\right)$	
glucose $(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons$ [glucose phosphate] ${ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	13.8
$\mathrm{ATP}^{4-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{ADP}^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$	-30.5
glucose $(\mathrm{aq})+\mathrm{ATP}^{4-}(\mathrm{aq}) \rightleftharpoons$ [glucose phosphate] $^{-}(\mathrm{aq})+\mathrm{ADP}^{3-}(\mathrm{aq})$	-16.7

For the overall reaction, $\Delta G^{\circ}=((13.8)+(-30.5)) \mathrm{kJ} \mathrm{mol}^{-1}=-16.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Using $\Delta G^{\circ}=-R T \ln K$,

$$
-16.7 \times 10^{3}=-8.314 \times(37+273) \ln K \quad \text { or } K=e^{6.48}=652
$$

```
Answer: }K=652 (no units
```

This overall equilibrium reaction is investigated by adding 0.0100 mol of ATP $^{4-}$ to a flask containing 175 mL of a 0.0500 M aqueous solution of glucose at $37^{\circ} \mathrm{C}$. What percentage of the ATP ${ }^{4-}$ will have been consumed when the system reaches equilibrium?

The initial concentration of ATP^{4-} is $\frac{n}{V}=\frac{0.0100 \mathrm{~mol}}{0.175 \mathrm{~L}}=0.0571 \mathrm{M}$. The reaction table is then:

	glucose(aq)	ATP $^{4-}(\mathrm{aq})$	\rightleftharpoons	[glucose phosphate] $^{-}(\mathrm{aq})$	ADP $^{3-}(\mathrm{aq})$
initial	$\mathbf{0 . 0 5 0 0}$	$\mathbf{0 . 0 5 7 1}$		$\mathbf{0}$	$\mathbf{0}$
change	$-\mathbf{x}$	$-\mathbf{x}$		$+\mathbf{x}$	$+\mathbf{x}$
equilibrium	$\mathbf{0 . 0 5 0 0 - x}$	$\mathbf{0 . 0 5 7 1 - \mathbf { x }}$		\mathbf{x}	\mathbf{x}

At equilibrium,

$$
K=\frac{\left[g l u \operatorname{cose} e-\text { phosphate }^{-}(\mathrm{aq})\right]\left[\mathrm{ADP}^{3-}(\mathrm{aq})\right]}{[\text { glu } \operatorname{cose} e(\mathrm{aq})]\left[\mathrm{ATP}^{4-}(\mathrm{aq})\right]}=\frac{\mathrm{x}^{2}}{(0.0500-\mathrm{x})(0.0571-\mathrm{x})}=652
$$

As the equilibrium constant is large so is x and this expression cannot be approximated. Instead, the full quadratic equation must be solved.

$$
\begin{aligned}
& x^{2}=652(0.0500-x)(0.0571-x) \text { or } \\
& 651 x^{2}-652(0.0500+0.0571)+(652 \times 0.0500 \times 0.0571)=0
\end{aligned}
$$

The two roots are $x_{1}=0.0578 \mathrm{M}$ and $\mathrm{x}_{2}=0.0495 \mathrm{M}$. As x_{1} gives a negative [glucose(aq)], it is not physically significant. As x is the concentration consumed, using x_{2} gives:

$$
\text { percentage of } \text { ATP }^{4-}(\mathrm{aq}) \text { consumed }=\frac{0.0495 \mathrm{M}}{0.0571 \mathrm{M}} \times 100 \%=87 \%
$$

Answer: 87\%
Suggest two simple ways of further reducing the remaining percentage of ATP ${ }^{4-}$.
The remaining ATP^{4-} can be reduced by (i) adding more glucose and (ii) reducing the temperature. Removal of either product would also drive the reaction to the right but would be very difficult to achieve in practice.

- Lysozyme is an enzyme that breaks down bacterial cell walls. A solution containing
0.150 g of this enzyme in 210 mL of solution has an osmotic pressure of 0.00125 atm at $25^{\circ} \mathrm{C}$. What is the molar mass of lysozyme?

The osmotic pressure, π, is given by $\pi=c R T$
Hence, if $\boldsymbol{\pi}=0.00125 \mathrm{~atm}$, the concentration at $25^{\circ} \mathrm{C}$ is given by:

$$
\left.c=\frac{\pi}{R T}=\frac{0.00125 \mathrm{~atm}}{(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}}{ }^{-1} \mathrm{~mol}^{-1}\right) \times((25+273) \mathrm{K}) \quad=5.1 \times 10^{-5} \mathrm{M}
$$

As $c=\frac{n}{V}, n=c V=\left(5.1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right) \times(0.210 \mathrm{~L})=1.1 \times 10^{-5} \mathrm{~mol}$
This amount corresponds to 0.150 g , so the molar mass, M, is:

$$
M=\frac{m}{M}=\frac{0.150 \mathrm{~g}}{1.1 \times 10^{-5} \mathrm{~mol}}=1.40 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}
$$

Answer: $\mathbf{1 . 4 0 \times 1 0} \mathbf{~ g ~ m o l}^{-1}$

- What mass of ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, is required to lower the freezing point of 1.00 L of water to $-10.0^{\circ} \mathrm{C}$? The freezing point depression constant of water is $1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$. Assume the density of water is $1.00 \mathrm{~g} \mathrm{~mL}^{-1}$ at $0{ }^{\circ} \mathrm{C}$.

The freezing point depression, ΔT_{f}, is related to the molality, m, and the freezing point depression constant, K_{f}, by $\Delta \boldsymbol{T}_{\mathrm{f}}=\boldsymbol{K}_{\mathrm{f}} m$

Hence, $m=\frac{\Delta T_{f}}{K_{f}}=\frac{10.0^{\circ} \mathrm{C}}{1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}}=5.38 \mathrm{~mol} \mathrm{~kg}^{-1}$
If the density of water is $1.00 \mathrm{~g} \mathrm{~mL}^{-1}, 1000 \mathrm{~mL}$ will have a mass of 1.00 kg .
As the molality is given $m=\frac{\text { amount of solute }(\mathrm{mol})}{\text { mass of solvent }(\mathrm{kg})}$, the amount of solute is:

$$
\begin{aligned}
\text { amount of solute }(\mathrm{mol}) & =\text { molality }\left(\mathrm{mol} \mathrm{~kg}^{-1}\right) \times \text { mass of solvent }(\mathrm{kg}) \\
& =5.38 \times 1.00 \mathrm{~mol}=5.38 \mathrm{~mol}
\end{aligned}
$$

The molar mass of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ is $(2 \times 12.01(\mathrm{C}))+(6 \times 1.008(\mathrm{H}))+$ $(2 \times 16.00(O))=62.068 \mathrm{~g} \mathrm{~mol}^{-1}$. The mass of 5.38 mol is therefore:

$$
\operatorname{mass}(\mathrm{g})=\operatorname{molar} \operatorname{mass}\left(\mathrm{g} \mathrm{~mol}^{-1}\right) \times \operatorname{amount}(\mathrm{mol})=62.068 \times 5.38 \mathrm{~g}=334 \mathrm{~g}
$$

- Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, is an important fuel in welding. It is produced in the laboratory when calcium carbide, CaC_{2}, reacts with water:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

For a sample of $\mathrm{C}_{2} \mathrm{H}_{2}$ collected over water, the total gas pressure was 748 mmHg and the volume was 543 mL . At the gas temperature $\left(23^{\circ} \mathrm{C}\right)$, the vapour pressure of water is 21 mmHg . What mass of acetylene was collected?

The total pressure is the sum of the partial pressures due to $\mathrm{C}_{2} \mathbf{H}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$:

$$
\begin{aligned}
& p_{\text {total }}=748 \mathrm{mmHg}=p_{\mathrm{H}_{2} \mathrm{O}}+p_{\mathrm{C}_{2} \mathrm{H}_{2}}=(21 \mathrm{mmHg})+p_{\mathrm{C}_{2} \mathrm{H}_{2}} \\
& p_{\mathrm{C}_{2} \mathrm{H}_{2}}=(748-21)=727 \mathrm{mmHg}
\end{aligned}
$$

As 760 mmHg corresponds to $1 \mathrm{~atm}, p_{\mathrm{C}_{2} \mathrm{H}_{2}}=\frac{727}{760} \mathrm{~atm}=0.957 \mathrm{~atm}$. Using the ideal gas law, $p V=n R T$, the number of moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ formed is:

$$
n=\frac{p V}{R T}=\frac{(0.957 \mathrm{~atm}) \times(0.543 \mathrm{~L})}{\left(0.08206 \mathrm{Latm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times((23+273) \mathrm{K})}=0.0214 \mathrm{~mol}
$$

The molar mass of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $(2 \times 12.01(\mathrm{C}))+(2 \times 1.008(\mathrm{H}))=26.036 \mathrm{~g} \mathrm{~mol}^{-1}$. This amount therefore corresponds to a mass of,

$$
\begin{aligned}
\text { mass } & =\text { number of moles } \times \text { molar mass }=0.0214 \mathrm{~mol} \times 26.036 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =0.557 \mathrm{~g}
\end{aligned}
$$

Answer: $\mathbf{0 . 5 5 7}$ g
The solubility of acetylene in water at $22.0^{\circ} \mathrm{C}$ is small. If the temperature were raised, would you expect this solubility to increase or decrease?

The solubility of gases in water decreases with temperature. The dissolution of a gas is entropically disfavoured and only occurs because it is exothermic. Like all exothermic process, the process becomes less favourable at higher temperatures (Le Chatelier's principle).

- Why is helium instead of nitrogen mixed with oxygen in deep sea diving? Explain the origin of any differences in relevant properties.

Increased pressure in lungs during deep sea diving causes an increased solubility of all gases in the blood. On ascending too quickly, these gases can bubble out of the blood. This is a serious problem with nitrogen as the bubbles can rupture blood vessels causing "the bends". The He atom is much smaller than the $\mathbf{N}_{\mathbf{2}}$ molecule, has a smaller electron cloud and is less polarisable. It therefore is less soluble in blood than nitrogen and is preferred as the above dangers are reduced.

- The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a key step in the metabolism of glucose for energy.

$$
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P}
$$

At 298 K , the equilibrium constant for the isomerisation is 0.510 . Calculate the value of ΔG° at 298 K .

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln (0.510) \\
& =+1670 \mathrm{~J} \mathrm{~mol}^{-1}=+1.67 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\text { Answer: }+\mathbf{1 . 6 7} \mathbf{~ k J ~ m o l}^{-1}
$$

Calculate ΔG at 298 K when the [F6P] / [G6P] ratio $=10$.
The reaction quotient, for the reaction, is $Q=\frac{[F 6 P]}{[G 6 P]}=10$
Using $\Delta G=\Delta G^{\circ}+R T \ln Q$,

$$
\begin{aligned}
\Delta G & =\left(+1.67 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)+\left(8.314 \times 298 \mathrm{~J} \mathrm{~mol}^{-1}\right) \times \ln (10) \\
& =+7400 \mathrm{~J} \mathrm{~mol}^{-1}=+7.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Answer: $\mathbf{+ 7 . 4} \mathbf{~ k J ~ m o l}^{-1}$
In which direction will the reaction shift in order to establish equilibrium? Why?
As ΔG is positive, the forward reaction is non-spontaneous and the backward reaction is spontaneous. The reaction thus shift backwards, increasing [G6P] and reducing [F6P] until $Q=K$.

Sketch a graph of $G_{\text {sys }}$ versus "extent of reaction", with a curve showing how $G_{\text {sys }}$ varies as G6P is converted to F6P. Indicate the position on this curve corresponding to the point where $[\mathrm{F} 6 \mathrm{P}] /[\mathrm{G} 6 \mathrm{P}]$ ratio $=10$. Indicate on the graph that section of the curve where $Q>K$.

- What is the molar solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ given its $K_{\text {sp }}=4.5 \times 10^{-21} \mathrm{M}^{3}$?

The solubility expression and product for $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ are:

$$
\mathrm{Cu}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{2}
$$

If the molar solubility is $\mathrm{S},\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]=\mathrm{S}$ and $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=2 \mathrm{~S}$. Hence,

$$
\begin{aligned}
& K_{\text {sp }}=(S) \times(2 S)^{2}=4 S^{3}=4.5 \times 10^{-21} \\
& S=1.0 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

Answer: $\mathbf{1 . 0} \times \mathbf{1 0}^{-7} \mathbf{M}$

- Draw all possible stereoisomers of the complex ion $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$. Label each as cis or trans. \quad en $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

- Name the following complexes.

$\mathrm{Na}_{3}\left[\mathrm{AlF}_{6}\right]$	sodium hexafluoroaluminate(III)
$\left[\mathrm{CoBr}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$	pentaamminebromocobalt(III) sulfate

- A cyclotron facility can produce beams of neutrons or protons. Theoretically, ${ }_{75}^{188} \mathrm{Re}$ can be produced by irradiation of ${ }_{74}^{186} \mathrm{~W}$ with either particle followed by radioactive decay of the intermediate nuclide. Give the relevant equations to describe both sequences of reactions.
neutron bombardment
${ }_{74}^{186} \mathrm{~W}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{74}^{187} \mathrm{~W}$
${ }_{74}^{187} W+{ }_{0}^{1} n \rightarrow{ }_{74}^{188} W$
${ }_{74}^{188} \mathrm{~W} \rightarrow{ }_{75}^{188} \operatorname{Re}+{ }_{-1}^{0} \mathrm{e} \quad$ (beta decay)
proton bombardment

$$
\begin{aligned}
& { }_{74}^{186} \mathrm{~W}+{ }_{1}^{1} \mathrm{p} \rightarrow{ }_{75}^{187} \mathrm{Re} \\
& { }_{75}^{187} \mathrm{~W}+{ }_{1}^{1} \mathrm{p} \rightarrow{ }_{76}^{188} \mathrm{Os} \\
& { }_{76}^{188} \mathrm{Os} \rightarrow{ }_{75}^{188} \operatorname{Re}+{ }_{1}^{0} \mathrm{p} \quad \text { (positron emission) }
\end{aligned}
$$

In practice, only the sequence using neutron bombardment is used. Give one possible reason why proton bombardment is not used.

Energy required to add positively charged protons to nucleus is large.
Intermediate in proton bombardment $\left({ }_{76}^{188} \mathrm{Os}\right)$ is stable.

Rhenium-188 is used for the relief of cancer-induced bone pain and has a half life of 16.7 hours. What mass of ${ }_{75}^{188} \mathrm{Re}$ needs to be produced to allow shipment 24 hours later of a solution with a specific activity of 500 mCi ?

The decay constant is related to the half life as $t_{1 / 2}=\frac{\ln 2}{\lambda}$. Thus,

$$
\lambda=\frac{\ln 2}{(16.7 \times 60 \times 60 \mathrm{~s})}=1.15 \times 10^{-5} \mathrm{~s}^{-1}
$$

As $A=\lambda N$, the activity of one mole is,

$$
\begin{aligned}
A_{\mathrm{m}} & =\left(1.15 \times 10^{-5}\right) \times\left(6.022 \times 10^{23}\right) \\
& =6.94 \times 10^{18} \mathrm{~Bq} \mathrm{~mol}^{-1}=\frac{6.94 \times 10^{18}}{3.70 \times 10^{10}}=1.88 \times 10^{8} \mathrm{Ci} \mathrm{~mol}^{-1}
\end{aligned}
$$

For ${ }^{188} \mathrm{Re}$, the atomic mass $=188$ and hence the activity per gram is,

$$
A_{\mathrm{g}}=\frac{1.88 \times 10^{8}}{188}=1.00 \times 10^{6} \mathrm{Ci} \mathrm{~g}^{-1}
$$

As the number of nuclei is proportional to the activity, the activity decreases with time according to the equation,

$$
\ln \left(\frac{A_{0}}{A_{\mathrm{t}}}\right)=\lambda \mathrm{t}
$$

Hence, if $\boldsymbol{A}=\mathbf{5 0 0} \mathbf{~ m C i}$ after $\mathbf{2 4}$ hours,

$$
\begin{aligned}
& \ln \left(\frac{A_{0}}{500 \times 10^{-3}}\right)=\left(1.15 \times 10^{-5}\right) \times(24 \times 60 \times 60) \\
& A_{0}=1.35 \mathrm{Ci}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { mass required } & =\frac{\text { activity required }}{\text { activity per gram }}=\frac{A_{0}}{A_{g}}=\frac{1.35}{1.00 \times 10^{6}} \\
& =1.35 \times 10^{-6} \mathrm{~g}=1.35 \mu \mathrm{~g}
\end{aligned}
$$

- How many minutes would be required to electroplate 25.0 g of manganese by passing a constant current of 4.8 A through a solution containing $\mathrm{MnO}_{4}{ }^{-}$?
25.0 g of manganese corresponds to
number of moles $=\frac{\text { mass }}{\text { atomic mass }}=\frac{25.0 \mathrm{~g}}{54.94 \mathrm{~g} \mathrm{~mol}^{-1}}=0.455 \mathrm{~mol}$
The reduction of MnO_{4}^{-}is a $7 \mathrm{e}^{-}$process:

$$
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+7 \mathrm{e}^{-} \rightarrow \mathbf{M n}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathbf{l})
$$

Production of 0.455 mol of $\mathrm{Mn}(\mathrm{s})$ requires $(7 \times 0.455)=3.19 \mathrm{~mol}$ of electrons.
The number of moles of electrons passed by a current I in a time t is given by
number of moles of electrons $=\frac{I \times t}{F}$
$3.19 \mathrm{~mol}=\frac{(4.8 \mathrm{~A}) \times \mathrm{t}}{96485 \mathrm{Cmol}^{-1}} \quad$ so $\mathrm{t}=64000 \mathrm{~s}=1100$ minutes

Answer: $\mathbf{1 1 0 0}$ minutes
THE ANSWER CONTINUES ON THE NEXT PAGE

- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?

$$
\text { As } \mathbf{p H}=-\log _{10}\left(\left[\mathbf{H}_{3} \mathbf{O}^{+}(\mathbf{a q})\right],\right.
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]_{\text {initial }}=10^{-1.22}=0.0600 \text { and }\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]_{\text {final }}=10^{-2.00}=0.0100
$$

The reaction table is:

	$\mathrm{IO}_{3}^{-}{ }^{-}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	\rightleftharpoons	HIO_{3}	$\mathrm{H}_{2} \mathrm{O}$
initial	x	0.0600		0	large
final	$\mathrm{x}-\mathbf{0 . 0 5 0 0}$	0.0100		0.0500	large

The solution contains a weak acid $\left(\mathrm{HIO}_{3}\right.$ and its conjugate base $\left(\mathrm{IO}_{3}\right)$. It is a buffer and can be treated using the Henderson-Hasselbalch equation,

$$
\begin{aligned}
& \mathbf{p H}=\mathbf{p K}_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& 2.00=0.79+\log _{10}\left(\frac{(\mathrm{x}-0.0500)}{0.0500}\right) \\
& \mathbf{x}=0.865 \mathrm{M}
\end{aligned}
$$

This concentration is present in 300.0 mL of solution so the number of moles of $\mathrm{IO}_{3}{ }^{-}$which has been added is,

$$
\text { number of moles }=\text { concentration } \times \text { volume }=0.865 \times 0.3000=0.260 \mathrm{~mol}
$$

- The solubility product constant of AgCl is $K_{\text {sp }}=1.8 \times 10^{-10} \mathrm{M}^{2}$. Using the relevant electrode potentials found on the data page, calculate the reduction potential at 298 K of a half-cell formed by:
(a) an Ag electrode immersed in a saturated solution of AgCl .

The standard electrode potential for $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$ is $E^{\circ}=+0.80 \mathrm{~V}$. This refers to the potential with $\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=1 \mathrm{M}$.

For the dissolution of $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}), K_{\text {sp }}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]$. As $\left[\mathbf{A g}^{+}(\mathrm{aq})\right]=\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]$,

$$
\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=\sqrt{K_{\mathrm{sp}}}=\sqrt{1.8 \times 10^{-10}}=1.3 \times 10^{-5} \mathrm{M}
$$

Using the Nernst equation, the cell potential at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ is,

$$
E=E^{\circ}-\frac{0.0592}{n} \log Q
$$

The $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathbf{A g}(\mathrm{s})$ half cell involves one electron and so $n=1$. The reaction quotient is $\frac{1}{\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]}$. Hence,

$$
E=(+0.80)-\frac{0.0592}{1} \log \left(\frac{1}{1.3 \times 10^{-5}}\right)=+0.52 \mathrm{~V}
$$

$$
\text { Answer: } \boldsymbol{E}=+\mathbf{0 . 5 2} \mathbf{V}
$$

(b) an Ag electrode immersed in a 0.5 M solution of KCl containing some AgCl precipitate.
$\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]=\mathbf{0 . 5} \mathrm{M}$ and as $K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]$,

$$
\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=\frac{K_{\mathrm{sp}}}{\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]}=\frac{1.8 \times 10^{-10} \mathrm{M}^{2}}{0.5 \mathrm{M}}=3.6 \times 10^{-10} \mathrm{M}
$$

The electrode potential is now,

$$
E=(+0.80)-\frac{0.0592}{1} \log \left(\frac{1}{3.6 \times 10^{-10}}\right)=+0.24 \mathrm{~V}
$$

Answer: $\boldsymbol{E}^{\circ}=+\mathbf{0 . 2 4} \mathbf{V}$

Each of these half-cells is connected to a standard $\mathrm{Cu}^{2+}(1 \mathrm{M}) / \mathrm{Cu}(\mathrm{s})$ half-cell. In which half-cell, (a) or (b), will clear evidence of a reaction be seen? Describe the change(s) observed.

For the $\mathbf{C u}^{2+}(\mathbf{1 M}) / \mathbf{C u}(\mathbf{s})$ half cell, the reduction potential is $E^{\circ}=+0.34 \mathrm{~V}$.
If the half cell is combined with half cell (a), the former has the least positive cell potential and is reversed:

$$
\begin{array}{ll}
\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & E=-0.34 \mathrm{~V} \\
\mathrm{Ag}^{+}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{A g}(\mathrm{s})\left(\left[\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=1.3 \times 10^{-5} \mathrm{M}\right)\right. & E=+0.52 \mathrm{~V} \\
\hline \mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) & E=(-0.34)+(+0.52)=+0.18 \mathrm{~V} \\
\hline
\end{array}
$$

If the half cell is combined with half cell (b), the latter has the least positive cell potential and is reversed:

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & E=+0.34 \mathrm{~V} \\
\mathbf{A g}(\mathrm{~s}) \rightarrow \mathrm{Ag}^{+}(\mathrm{s})+\mathrm{e}^{-}\left(\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=\mathbf{3 . 6 \times 1 0 ^ { - 1 0 }} \mathrm{M}\right) & E=-0.24 \mathrm{~V} \\
\hline \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) \rightarrow \mathbf{C u}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathbf{a q}) & E=(+0.34)+(-0.24)=+0.10 \mathrm{~V} \\
\hline
\end{array}
$$

Although both reactions have $E>0 \mathrm{~V}$ and so are spontaneous, only the second reaction will give clear evidence of a reaction. The $\mathrm{Ag}^{+}(\mathrm{aq})$ ions produced will react with the excess $\mathrm{Cl}^{-}(\mathrm{aq})$ present to give a white precipitate of AgCl around the electrode

- Zinc sulfate $(0.50 \mathrm{~g})$ is dissolved in 1.0 L of a 1.0 M solution of KCN . Write the chemical equation for the formation of the complex ion $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$.
$\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})$

Calculate the concentration of $\mathrm{Zn}^{2+}(\mathrm{aq})$ in solution at equilibrium. Ignore any change in volume upon addition of the salt. $\quad K_{\text {stab }}$ of $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}=4.2 \times 10^{19} \mathrm{M}^{-4}$.

0.50 g therefore corresponds to:

$$
\text { number of moles }=\frac{\text { mass }}{\text { formula mass }}=\frac{0.50 \mathrm{~g}}{161.46 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0031 \mathrm{~mol}
$$

As $K_{\text {stab }}=4.2 \times 10^{19}$ and is very large, the reaction essentially goes to completion. The reaction requires a 4:1 ratio $\mathbf{C N}^{-}: \mathbf{Z n}^{\mathbf{2 +}}(\mathrm{aq})$ ions and as 0.0031 mol of $\mathbf{Z n}^{\mathbf{2 +}}$ and 1.0 mol of CN^{-}are present, CN^{-}is in excess.

Let the tiny amount of uncomplexed $\mathbf{Z n}^{2+}(\mathrm{aq})$ and its concentration in 1.0 L be:

$$
\text { amount of } \mathrm{Zn}^{2+}(\mathrm{aq})=x \mathrm{~mol} \text { and }\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]=\frac{\text { number of moles }}{\text { volume }}=\frac{x}{1.0} \mathrm{M}
$$

The amount of $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2+}(\mathrm{aq})$ formed is therefore:
amount of $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})=(0.0031-x) \sim 0.0031 \mathrm{~mol}$ as x is so small.
Hence,

$$
\left[\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-+}(\mathrm{aq})\right] \sim \frac{0.0031}{1.0}=0.0031 \mathrm{M}
$$

Formation of 0.0031 mol of $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})$ requires $(4 \times \mathbf{0 . 0 0 3 1})=\mathbf{0 . 0 1 2} \mathbf{~ m o l}$ of cyanide, leaving:

$$
\text { amount of } \mathrm{CN}^{-}=(1.0-0.012)=0.99 \mathrm{~mol} \text { and }\left[\mathrm{CN}^{-}(\mathrm{aq})\right]=\frac{0.99}{1.0} \mathrm{M}
$$

Hence,

$$
\begin{aligned}
K_{\text {stab }} & =\frac{\left[\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})\right]}{\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]\left[\mathrm{CN}^{-}(\mathrm{aq})\right]^{4}}=\frac{(0.0031)}{(\mathrm{x})(0.99)^{4}}=4.2 \times 10^{19} \\
x & =7.7 \times \mathbf{1 0}^{-23} \mathrm{~mol} \text { and so }\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]=7.7 \times 10^{-23} \mathrm{M}
\end{aligned}
$$

- Describe how the addition of an electrolyte can alter the state of a colloidal dispersion.

If the colloidal particle has a charge, a layer of oppositely charged ions will form on the surface (the Stern layer). In the region around the outside of the colloid, there is therefore a build-up of counter ions creating a double charge layer. The charge surrounding one colloid will repel the charge surrounding other particles and so coagulation is prevented.

Addition of an electrolyte leads to reduction in the net charge surrounding each colloid and prevents this electrostatic stabilization. As a result, the colloid particles tend to coagulate and the colloidal dispersion is lost.

- Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following rate data were collected at $225{ }^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}[\mathrm{NO}] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Determine the rate law for the reaction.

Between experiments 1 and 2, $\left[\mathrm{H}_{2}\right]_{0}$ is constant. Doubling [NO$]_{0}$ leads to the rate increasing by a factor of four. The rate is second-order with respect to NO.

Between experiments 1 and 3, $[\mathrm{NO}]_{0}$ is constant. Doubling $\left[\mathrm{H}_{2}\right]_{0}$ leads to the rate doubling. The rate is second-order with respect to H_{2}.

$$
\text { rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.

Using experiment 1 , the rate is $2.6 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$ when $[\mathrm{NO}]_{0}=6.4 \times 10^{-3} \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]_{0}=$ 2.2×10^{-3}. Hence,

$$
\begin{aligned}
& 2.6 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}=k\left(6.4 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(2.2 \times 10^{-3} \mathrm{M}\right) \\
& k=290 \mathrm{M}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

The units of k are found by requiring that the units in the rate law balance:

$$
\begin{aligned}
& -\mathrm{d}[\mathrm{NO}] / \mathrm{dt}=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] \\
& \mathrm{M} \mathrm{~s}^{-1}=(\text { units of } \mathrm{k}) \times(\mathrm{M})^{2} \times(\mathrm{M}) \\
& \text { units of } \mathrm{k}=\mathrm{M}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Calculate the rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ when $[\mathrm{NO}]=\left[\mathrm{H}_{2}\right]=6.6 \times 10^{-3} \mathrm{M}$.
As -d[NO]/dt = 290[NO] ${ }^{2}\left[\mathbf{H}_{2}\right]$,

$$
-\mathrm{d}[\mathrm{NO}] / \mathrm{dt}=\left(290 \mathrm{M}^{-2} \mathrm{~s}^{-1}\right) \times\left(6.6 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(6.6 \times 10^{-3} \mathrm{M}\right)=8.3 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}
$$

From the chemical equation, two NO are lost for every one $\mathrm{N}_{2} \mathrm{O}$ that is made. Hence the rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ is half this value:

$$
-\mathrm{d}[\mathrm{NO}] / \mathrm{dt}=1 / 2 \times 8.3 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}=4.1 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}
$$

Answer: $\mathbf{4 . 1} \times \mathbf{1 0}^{-5} \mathrm{M} \mathrm{s}^{-1}$
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

$$
\begin{aligned}
& \mathrm{NO}+\mathrm{NO} \rightleftharpoons(\mathrm{NO})_{2} \\
& (\mathrm{NO})_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The second step is rate determining as it is slow. For this elementary step, the rate law can be written down using the stoichiometry of the reaction equation:

$$
\text { rate }=\mathbf{k}_{2}\left[(\mathrm{NO})_{2}\right]\left[\mathrm{H}_{2}\right]
$$

If the equilibrium in the first step is rapidly obtained then,

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[(\mathrm{NO})_{2}\right]}{[\mathrm{NO}]^{2}} \text { or }\left[(\mathrm{NO})_{2}\right]=\mathrm{K}_{\mathrm{eq}}[\mathrm{NO}]^{2}
$$

Substituting this back into the rate law for the rate determining step gives,

$$
\text { rate }=\mathbf{k}_{2}\left[(\mathbf{N O})_{2}\right]\left[\mathbf{H}_{2}\right]=\mathbf{k}_{2} \times \mathbf{K}_{\mathrm{eq}}[\mathrm{NO}]^{2} \times\left[\mathbf{H}_{2}\right]=\mathbf{k}_{\mathrm{eff}}[\mathrm{NO}]^{2}\left[\mathbf{H}_{2}\right]
$$

This rate law is consistent with the one determined experimentally and so the proposed mechanism is consistent.

