Click on the links for resources on each topic.

2014-N-2:

- Acids and Bases
- Complexes
- Chemical Equilibrium
- Chemical Kinetics
- Introduction to Chemical Energetics

2014-N-3:

- Introduction to Chemical Energetics
- Acids and Bases

2014-N-4:

- Solutions
- Introduction to Chemical Energetics

2014-N-5:

- Introduction to Chemical Energetics

2014-N-6:

- Introduction to Chemical Energetics

2014-N-7:

- Acids and Bases

2014-N-8:

- Acids and Bases

2014-N-9:

- Chemical Equilibrium

2014-N-10:

- Radiochemistry
- Complexes

2014-N-11:

- Solubility
- Complexes

2014-N-12:

- Introduction to Colloids and Surface Chemistry
- Redox Reactions and Introduction to Electrochemistry

2014-N-13:

- Redox Reactions and Introduction to Electrochemistry

2014-N-14:

- Chemical Kinetics
- Explain the following terms or concepts.

Lewis base
A species that can form a bond by donating a lone pair of electrons, e.g. $\mathbf{H}_{\mathbf{2}} \mathrm{O}$.
Le Châtelier's principle
Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle predicts that a reaction shifts to counteract the change.

Heterogeneous catalysis
Catalysis that occurs with the reactants and catalyst are in different phases, such as a solid catalysing the reaction of gases.

- A bar of hot iron with a mass of 1.000 kg and a temperature of $100.00^{\circ} \mathrm{C}$ is plunged
into an insulated tank of water. The mass of water was 2.000 kg and its initial temperature was $25.00{ }^{\circ} \mathrm{C}$. What will the temperature of the resulting system be when it has reached equilibrium? The specific heat capacities of water and iron are $4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and $0.4498 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, respectively.

The heat lost by the iron is equal to the heat gained by the water.
The heat change is related to the temperature change through $q=m C \Delta T$ where m is the mass of the substance and C is its specific heat capacity.

For the water,

$$
\begin{aligned}
q=m_{\mathrm{H}_{2} \mathrm{O}} C_{\mathrm{H}_{2} \mathrm{O}} \Delta T_{\mathrm{H}_{2} \mathrm{O}} & =\left(2.000 \times 10^{3} \mathrm{~g}\right) \times\left(4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-25.00\right) \mathrm{K}\right) \\
& =\left(8.368 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-\mathbf{2 5 . 0 0}\right) \mathrm{K}\right)
\end{aligned}
$$

For the iron,

$$
\left.\left.\begin{array}{rl}
q=m_{\mathrm{Fe}} C_{\mathrm{Fe}} \Delta T_{\mathrm{Fe}} & =\left(1.000 \times 10^{3} \mathrm{~g}\right) \times\left(0.4498 \mathrm{~J} \mathrm{~g}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right) \\
& =\left(0.4498 \times 10^{3} \mathrm{~J} \mathrm{~K}\right.
\end{array}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right)\right)
$$

Hence, as $q_{\text {water }}=-q_{\text {iron }}$:

$$
\left(8.368 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-25.00\right) \mathrm{K}\right)=-\left(0.4498 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right)
$$

$$
\boldsymbol{T}_{\mathrm{f}}=28.83{ }^{\circ} \mathrm{C}
$$

- A mass of 1.250 g of benzoic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$, underwent combustion in a bomb calorimeter. The heat of combustion of benzoic acid is $-3226 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the change in internal energy during this reaction?

The molar mass of benzoic acid is:

$$
\begin{aligned}
\text { molar mass } & =(7 \times 12.01(\mathrm{C})+6 \times 1.008(\mathrm{H})+2 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{~mol}^{-1} \\
& =122.12 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

The number of moles of benzoic acid in 1.250 g is therefore:

$$
\begin{aligned}
\text { number of moles } & =\text { mass } / \operatorname{molar} \text { mass }=1.250 \mathrm{~g} / 122.12 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =\mathbf{0 . 0 1 0 2 4} \mathbf{~ m o l}
\end{aligned}
$$

As combustion of $1 \mathbf{~ m o l}$ leads to a heat change of $\mathbf{- 3 2 2 6} \mathbf{k J}$, this quantity will generate an energy change of:

$$
q=(0.01024 \mathrm{~mol}) \times\left(-3226 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=-33.02 \mathrm{~kJ}^{2}
$$

Answer: - $\mathbf{3 3 . 0 2} \mathbf{~ k J}$

If the heat capacity of the calorimeter is $10.134 \mathrm{~kJ} \mathrm{~K}^{-1}$, calculate the temperature change that should have occurred in the apparatus.

The heat change, q, and temperature change, ΔT, are related by the heat capacity, C :

$$
q=C \Delta T
$$

or

$$
\Delta T=q / C=33.02 \mathrm{~kJ} / 10.134 \mathrm{~kJ} \mathrm{~K}^{-1}=3.258 \mathrm{~K}
$$

An exothermic reaction will lead to a temperature increase in the apparatus.
Answer: +3.258 K

- Phenylketonuria is an inherited disorder in which phenylacetic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$, (simplified here to HPAc) accumulates in the blood. A study of the acid shows that the pH of a 0.12 M HPAc solution is 2.60 . What is the $\mathrm{p} K_{\mathrm{a}}$ of phenylacetic acid?

As HPAc is a weak acid, the equilibrium for its dissociation can be studied using an 'ICE' table:

	HPAc	\rightleftharpoons	PAc^{-}	\mathbf{H}^{+}
initial	$\mathbf{0 . 1 2}$		0	0
change	$-\boldsymbol{x}$		$+\boldsymbol{x}$	$+\boldsymbol{x}$
final	$\mathbf{0 . 1 2 - x}$		x	x

ANSWER CONTINUES ON THE NEXT PAGE

By definition, $\mathbf{p H}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ so $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-2.60} \mathrm{M}$. From the reaction table, $x=\left[\mathbf{H}^{+}(\mathrm{aq})\right]_{\mathrm{eq}}$ so:

$$
\begin{aligned}
& {\left[\mathrm{HPAc}_{\mathrm{eq}}=0.12-x=\left(0.12-10^{-2.60}\right) \mathrm{M}=0.12 \mathrm{M} \text { (to } 2 \text { s.f. }\right)} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eq}}=x=10^{-2.60} \mathrm{M}} \\
& {\left[\mathrm{PAc}^{-}(\mathrm{aq})\right]_{\mathrm{eq}}=x=1 \mathbf{1 0}^{-2.60} \mathrm{M}}
\end{aligned}
$$

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{HPac}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HPAc}]}=\frac{\left(10^{-2.60}\right)\left(10^{-2.60}\right)}{(0.12)}=5.26 \times 10^{-5}
$$

By definition, $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}$ so:

$$
\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(5.26 \times 10^{-5}\right)=4.28
$$

- The freezing point of a sample of seawater is measured as $-2.15^{\circ} \mathrm{C}$ at 1 atm pressure.

Marks Assuming that the concentrations of other solutes are negligible, determine the molality (in $\mathrm{mol} \mathrm{kg}^{-1}$) of NaCl in this sample. The molal freezing point depression constant for $\mathrm{H}_{2} \mathrm{O}$ is $1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$.

The freezing point depression, ΔT_{f}, is given by,

$$
\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m
$$

where K_{f} is the molal freezing point depression and m is the molality. The molality is the number of moles of ions dissolved in a kilogram of solvent.

If $\Delta T_{\mathrm{f}}=2.15^{\circ} \mathrm{C}$ and $K_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{m}^{-1}$:

$$
m_{\text {ions }}=\Delta T_{\mathrm{f}} / K_{\mathrm{f}}=\left(2.15^{\circ} \mathrm{C}\right) /\left(1.86^{\circ} \mathrm{C} \mathrm{~m}^{-1}\right)=1.156 \mathrm{~m}^{-1}=1.156 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

A mole of NaCl dissolves to give two particles $\left(\mathrm{Na}^{+}\right.$and $\left.\mathrm{Cl}^{-}\right)$so (1.156/2) mol = $0.578 \mathbf{~ m o l}$ of NaCl per kilogram of water is needed:

$$
m_{\mathrm{NaCl}}=0.578 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

Answer: $\mathbf{0 . 5 7 8} \mathbf{~ m o l ~ k g}{ }^{-1}$

- What is the value of the enthalpy change for the following reaction?

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})
$$

Data:

Compound	$\mathrm{MgO}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{MgCO}_{3}(\mathrm{~s})$
$\Delta_{\mathrm{f}} H^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$	-602	-394	-1096

Using $\Delta H^{\circ}=\sum \Delta_{\mathrm{f}} H^{\circ}$ (products) $-\sum \Delta_{\mathrm{f}} H^{\circ}$ (reactants), the enthalpy change is:

$$
\begin{aligned}
\Delta H^{\circ} & =\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{MgCO}_{3}(\mathrm{~s})\right)-\left[\Delta_{\mathrm{f}} H^{\circ}(\mathrm{MgO}(\mathrm{~s}))+\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)\right] \\
& =(-1096-[-394-602]) \mathrm{kJ} \mathrm{~mol}^{-1}=-100 . \mathrm{kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Answer: - $\mathbf{1 0 0} \mathbf{.} \mathbf{k J ~ m o l}^{\mathbf{- 1}}$
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Consider the following reaction and associated thermochemical data?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

Data: | Compound | $\mathrm{NO}_{2}(\mathrm{~g})$ | $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ |
| :---: | :---: | :---: |
| | $\Delta_{\mathrm{f}} H^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$ | 33 |
| $S^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | 240 | 304 |

What is the expression for the equilibrium constant, K_{c}, for this reaction?

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}}
$$

What are the values of ΔH° and ΔS° for the reaction?

Using $\Delta H^{\circ}=\sum \Delta_{\mathrm{f}} H^{\circ}$ (products) $-\sum \Delta_{\mathrm{f}} H^{\circ}$ (reactants), the enthalpy change is:

$$
\begin{aligned}
\Delta H^{\circ} & =2 \Delta_{\mathrm{f}} H^{\circ}(\text { products })-\Delta_{\mathrm{f}} H^{\circ}(\text { reactants }) \\
& =(9-2 \times 33) \mathrm{kJ} \mathrm{~mol}^{-1}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Using $\Delta S^{\circ}=\sum S^{\circ}$ (products) $-\sum S^{\circ}$ (reactants), the entropy change is:
$\Delta S^{\circ}=2 S^{\circ}$ (products) $-S^{\circ}$ (reactants)
$=(304-2 \times 240) \mathrm{kJ} \mathrm{mol}^{-1}=-176 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$\Delta H^{\circ}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$\Delta S^{\circ}=-\mathbf{1 7 6} \mathbf{~ J ~ K}^{-1} \mathbf{~ m o l}^{-1}$

What is the value of ΔG° for the reaction at 298 K ?

Using $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta H^{\circ}$:

$$
\begin{aligned}
\Delta G^{\circ} & =\left(-57 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)-(298 \mathrm{~K})\left(-176 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& =-5000 \mathrm{~J} \mathrm{~mol}^{-1}=-5 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\Delta G^{\circ}=-5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Consider the following reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})
$$

Calculate ΔG° for this reaction given the following data.

$$
\begin{array}{ll}
4 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta G^{\circ}=-139.56 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta G^{\circ}=-69.70 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Using $\Delta_{\mathrm{r}} G^{\circ}=\sum \Delta_{\mathrm{f}} G^{\circ}$ (products) $-\sum \Delta_{\mathrm{f}} G^{\circ}$ (reactants), the free energy changes in the 3 reactions are, respectively:

$$
\begin{aligned}
& \Delta_{\mathrm{r}} G^{\circ}(1)=4 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-2 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})\right) \\
& \Delta_{\mathrm{r}} G^{\circ}(2)=2 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})\right)-4 \Delta_{\mathrm{f}} G^{\circ}(\mathrm{NO}(\mathrm{~g}))=-139.56 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\mathrm{r}} G^{\circ}(3)=2 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-2 \Delta_{\mathrm{f}} G^{\circ}(\mathrm{NO}(\mathrm{~g}))=-69.70 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Mathematically, the combination $2 \Delta_{\mathrm{r}} G^{\circ}(3)-\Delta_{\mathrm{r}} G^{\circ}(2)$ leads to $\Delta_{\mathrm{r}} G^{\circ}(\mathbf{1})$:

$$
\begin{aligned}
2 \Delta_{\mathrm{r}} G^{\circ}(3) & =4 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-4 \Delta_{\mathrm{f}} G^{\circ}(\mathrm{NO}(\mathrm{~g})) \\
\Delta_{\mathrm{r}} G^{\circ}(2) & =2 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})\right)-4 \Delta_{\mathrm{f}} G^{\circ}(\mathrm{NO}(\mathrm{~g}))
\end{aligned}
$$

$$
2 \Delta_{\mathrm{r}} G^{\circ}(3)-\Delta_{\mathrm{r}} G^{\circ}(2)=4 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-2 \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})\right)=\Delta_{\mathrm{f}} G^{\circ}(1)
$$

$$
\begin{aligned}
\Delta_{\mathrm{f}} G^{\circ}(1) & =2 \Delta_{\mathrm{r}} G^{\circ}(3)-\Delta_{\mathrm{r}} G^{\circ}(2)=[(2 \times-69.70)-(-139.56)] \mathrm{kJ} \mathrm{~mol}^{-1} \\
& =0.16 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- A sample of hydrofluoric acid ($0.10 \mathrm{M}, 25.0 \mathrm{~mL}$) is titrated with 0.10 M NaOH . The $\mathrm{p} K_{\mathrm{a}}$ of hydrofluoric acid, HF , is 3.17. Calculate the pH at the following four points.
before any NaOH is added
At this point, the solution contains only a weak acid. As HF is a weak acid, $\left[\mathrm{H}^{+}\right]$ must be calculated by considering the equilibrium:

	HF	\rightleftharpoons	\mathbf{F}^{-}	\mathbf{H}^{+}
initial	0.10		0	0
change	$-x$		$+x$	$+x$
final	$0.10-x$		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HF}]}=\frac{x^{2}}{(0.10-x)}
$$

As $\mathrm{p} K_{\mathrm{a}}=3.17, K_{\mathrm{a}}=10^{-3.17} . K_{\mathrm{a}}$ is very small so $0.10-x \sim 0.10$ and hence:

$$
x^{2}=0.10 \times 10^{-3.17} \quad \text { or } \quad x=0.00822 \mathrm{M}=[\mathrm{H} \cdot]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}[\mathrm{H} \cdot]=-\log _{10}[0.00822]=2.09
$$

$$
\mathrm{pH}=\mathbf{2 . 0 9}
$$

when half of the HF has been neutralised
At this point, half of the original HF has been converted to its conjugate base F^{-}. The $\mathbf{p H}$ can be calculated using the Henderson-Hasselbalch equation:

$$
\mathrm{pH}=\mathbf{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}=3.17+\log \frac{\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=3.17++\log (1)=3.17
$$

```
pH=3.17
```

at the equivalence point
At this point, all of the original HF has been converted to F^{-}. The number of moles of HF originally present is:

$$
\text { number of moles of } \begin{aligned}
\mathrm{HF} & =\text { concentration } \times \text { volume } \\
& =\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right) \times(0.025 \mathrm{~L})=0.0025 \mathrm{~mol}
\end{aligned}
$$

This is equal to the amount of F^{-}present at equivalence. As 25.0 mL of NaOH has been added at this point, the total volume is now $(25.0+25.0) \mathrm{mL}=50.0 \mathrm{~mL}$. The concentration of F^{-}is therefore:

As F^{-}is a weak base. $\left[\mathrm{OH}^{-}\right]$must be calculated using a reaction table.

	F^{-}	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	HF	OH^{-}
initial	0.050	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$0.050-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}=\frac{y^{2}}{(0.050-y)}
$$

For an acid and its conjugate base:

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{p} K_{\mathrm{b}}=14.00-3.17=10.83
\end{aligned}
$$

As $\mathrm{p} K_{\mathrm{b}}=10.83, K_{\mathrm{b}}=10^{-10.83} . K_{\mathrm{b}}$ is very small so $0.050-y \sim 0.050$ and hence:

$$
y^{2}=0.050 \times 10^{-10.83} \text { or } y=8.59 \times 10^{-7} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}\left[8.59 \times 10^{-7}\right]=6.07
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14.00$ so

$$
\mathrm{pH}=14.00-6.07=7.93
$$

$$
\mathrm{pH}=\mathbf{7 . 9 3}
$$

after the addition of 37.5 mL of NaOH

This volume of 0.10 M NaOH contains

$$
\text { number of moles of } \begin{aligned}
\mathrm{NaOH} & =\text { concentration } \times \text { volume } \\
& =\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right) \times(0.0375 \mathrm{~L})=0.00375 \mathrm{~mol}
\end{aligned}
$$

From above, there was original 0.0025 mol of HF present so the excess of OH^{-}is:

$$
\text { excess moles of } \mathrm{OH}^{-}=(0.00375-0.0025) \mathrm{mol}=0.00125 \mathrm{~mol}
$$

This is present in a total volume of $(25.0+37.5) \mathrm{mL}=62.5 \mathrm{~mL}$, so its concentration is:

$\left[\mathrm{OH}^{-}\right]=$number of moles / volume

$$
=(0.00125 \mathrm{~mol}) /(0.0625 \mathrm{~L})=0.020 \mathrm{~mol} \mathrm{~L}^{-1}
$$

Hence,

$$
\mathrm{pOH}-=-\log _{10}\left[\mathrm{OH}^{-}\right]=-\log _{10}(0.020)=1.70
$$

Lastly, $\mathrm{pH}=14.00-\mathrm{pOH}$:

$$
\mathrm{pH}=14.00-1.70=12.30
$$

$$
\mathrm{pH}=\mathbf{1 2 . 3 0}
$$

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Sketch the titration curve.

Putting the $\mathbf{4}$ points from 2014-N-7 together gives the titration curve:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- At $700^{\circ} \mathrm{C}$, hydrogen and iodine react according to the following equation.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad K_{\mathrm{c}}=49.0
$$

If 0.250 mol of $\mathrm{HI}(\mathrm{g})$ is introduced into a 2.00 L flask at $700^{\circ} \mathrm{C}$, what will be the concentration of $\mathrm{I}_{2}(\mathrm{~g})$ at equilibrium?

The initial concentration of $\mathbf{H I}(\mathrm{g})$ is $\mathbf{0 . 2 5 0} / 2.00 \mathrm{~mol} \mathrm{~L}^{-1}=0.125 \mathrm{~mol} \mathrm{~L}^{-1}$.

	$\mathbf{H}_{2}(\mathrm{~g})$	$\mathbf{I}_{2}(\mathbf{g})$	\rightleftharpoons	$2 \mathrm{HI}(\mathrm{g})$
Initial	$\mathbf{0}$	0		$\mathbf{0 . 1 2 5}$
Change	$+x$	$+x$		$-2 x$
Equilibrium	x	x		$0.125-2 x$

Thus,

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(0.125-2 x)^{2}}{(x)(x)}=\frac{(0.125-2 x)^{2}}{x^{2}}=49.0
$$

$(49.0)^{1 / 2}=\frac{(0.125-2 x)}{x}$

Rearranging gives $x=\left[\mathbf{I}_{2}(\mathrm{~g})\right]=0.0139 \mathrm{M}$.

Answer: $\mathbf{0 . 0 1 3 9} \mathbf{M}$

Hydrogen also reacts with sulfur at $700^{\circ} \mathrm{C}$:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad K_{\mathrm{c}}=1.075 \times 10^{8}
$$

Determine K_{c} for the following overall equilibrium reaction at $700^{\circ} \mathrm{C}$.

$$
2 \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{S}_{2}(\mathrm{~g})+4 \mathrm{HI}(\mathrm{~g})
$$

The overall reaction corresponds to the twice the first reaction combined with the reverse of the second reaction:

$\mathbf{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HI}(\mathrm{g})$	$K_{\mathrm{c}}(1)=(49.0)^{2}$
$\mathbf{2} \mathbf{H}_{2} \mathbf{S}(\mathrm{~g}) \rightleftharpoons 2 \mathbf{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$	$K_{\mathrm{c}}(2)=1 /\left(1.075 \times 10^{8}\right)$
$2 \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{S}_{2}(\mathrm{~g})+4 \mathrm{HI}(\mathrm{g})$	$K_{\mathrm{c}}(\mathbf{3})=K_{\mathrm{c}}(\mathbf{1}) \times K_{\mathrm{c}}(\mathbf{2})$

The $1^{\text {st }}$ reaction is doubled so the original equilibrium constant is squared.
The $2^{\text {nd }}$ reaction is reversed so the reciprocal of the equilibrium constant is used.

The two reactions are then combined and the overall equilibrium constant is then the product:

$$
K_{\mathrm{c}}(3)=K_{\mathrm{c}}(1) \times K_{\mathrm{c}}(2)=(49.0)^{2} \times\left(1 /\left(1.075 \times 10^{8}\right)=2.23 \times 10^{-5}\right.
$$

- Write balanced nuclear equations for the following changes.

Electron capture by ${ }^{37} \mathrm{Ar}$

Positron emission by ${ }^{93} \mathrm{Ru}$

$$
{ }_{18}^{37} \mathrm{Ar}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{17}^{37} \mathrm{Cl}+{ }_{0}^{0} \gamma
$$

$$
{ }_{44}^{93} \mathrm{Ru} \rightarrow{ }_{43}^{93} \mathrm{Tc}+{ }_{+1}^{0} \mathrm{e}
$$

Beta particle emission by ${ }^{42} \mathrm{~K}$

$$
{ }_{19}^{42} \mathrm{~K} \rightarrow{ }_{20}^{42} \mathrm{Ca}+{ }_{-1}^{0} \mathrm{e}
$$

Alpha particle emission by ${ }^{251} \mathrm{Cf}$

${ }_{18}^{37} \mathrm{Ar}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{17}^{37} \mathrm{Cl}+{ }_{0}^{0} \gamma$
${ }_{44}^{93} \mathrm{Ru} \rightarrow{ }_{43}^{93} \mathrm{Tc}+{ }_{+1}^{0} \mathrm{e}$
${ }_{19}^{42} \mathrm{~K} \rightarrow{ }_{20}^{42} \mathrm{Ca}+{ }_{-1}^{0} \mathrm{e}$
${ }_{98}^{251} \mathrm{Cf} \rightarrow{ }_{96}^{247} \mathrm{Cm}+{ }_{2}^{4} \alpha$

- Give the oxidation number of the indicated atom in the following compounds.

Compound	Atom	Oxidation number
HNO_{2}	N	$\mathbf{+ \text { III or } + \mathbf { 3 }}$
NI_{3}	N	-III or -3
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{SO}_{4}$	Co	$+\mathbf{\text { III or } + \mathbf { 3 }}$
$\mathrm{K}_{3}\left[\mathrm{CrCl}_{6}\right]$	Cr	$+\mathbf{I I I}$ or $+\mathbf{3}$

- Write down the formulas for the following compounds.

Compound	Formula
hexaaquacobalt(II) carbonate	$\left[\mathbf{C o}\left(\mathbf{O H}_{2}\right)_{6}\right] \mathbf{C O}_{3}$
tetraamminecopper(II) sulfate	$\left[\mathbf{C u}\left(\mathbf{N H}_{3}\right)_{4}\right] \mathbf{S O}_{4}$
ammonium hexafluoridoferrate(III)	$\left(\mathbf{N H}_{4}\right)_{2}\left[\mathbf{F e F}_{6}\right]$
potassium hexacyanidomanganate(II)	$\mathbf{K}_{4}\left[\mathbf{M n}(\mathbf{C N})_{6}\right]$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- The $K_{\text {sp }}$ of AgBr is 5.0×10^{-13}. The $K_{\text {stab }}$ of $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ is 4.7×10^{13}. Calculate the value of the equilibrium constant for the dissolution of AgBr in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.

The reactions corresponds to $K_{\text {sp }}$ and $K_{\text {stab }}$ can be added together to give the reaction for the dissolution of AgBr in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution:

$$
K_{\mathrm{sp}}=5.0 \times 10^{-13}
$$

$$
\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}(\mathrm{aq})
$$

$$
\mathrm{AgBr}(\mathrm{~s})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

The equilibrium constant for the overall reaction is the product of the

 equilibrium constants for the individual reactions:$$
K=K_{\text {sp }} \times K_{\text {stab }}=\left(5.0 \times 10^{-13}\right) \times\left(4.7 \times 10^{13}\right)=24
$$

Answer: 24
Calculate the solubility of AgBr in $2.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

The solubility can be calculated using a reaction table, assuming x mol dissolves:

	$\mathbf{A g B r}(\mathrm{s})$	$\mathbf{2 S}_{2} \mathbf{O}_{3}{ }^{2-}(\mathrm{aq})$	\rightleftharpoons	$\left[\mathrm{Ag}\left(\mathbf{S}_{2} \mathbf{O}_{3}\right)_{2}\right]^{3-}(\mathrm{aq})$	$\operatorname{Br}^{-}(\mathrm{aq})$
initial	excess	2.0		0	0
change	$-x$	$-2 x$		$+x$	$+x$
final	excess	$2.0-2 x$		x	x

$$
\begin{aligned}
K & =\frac{\left.\left[\operatorname{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}(\mathrm{aq})\right]\left[\mathrm{Br}^{-}(\mathrm{aq})\right]}{\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right]^{2}} \\
& =\frac{(x)(x)}{(2.0-2 x)^{2}}=\frac{x^{2}}{(2.0-2 x)^{2}}=24
\end{aligned}
$$

Taking square roots of both sides gives:

$$
\frac{x}{(2.0-2 x)}=(24)^{1 / 2} \quad x=0.91 \mathrm{~mol} \mathrm{~L}^{-1}
$$

Answer: $\mathbf{0 . 9 1 ~ m o l ~ L ~}{ }^{-1}$

The $K_{\text {stab }}$ for $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ is much greater than the $K_{\text {stab }}$ for $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$. Explain why this is so.
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is a stronger ligand than NH_{3}, presumably because of its negative charge.

- Draw sketches of a detergent micelle, a lipid vesicle and a water-in-oil microemulsion.

detergent micelle

- In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A ?

The number of moles of electrons passed in 2.00 hours by a current of 1.8 A is:

$$
\begin{aligned}
\text { number of moles of electrons } & =I t / F \\
& =(1.8 \mathrm{~A})(2.00 \times 60.0 \times 60.0 \mathrm{~s}) / 96485 \mathrm{C} \mathrm{~mol}^{-1} \\
& =0.13 \mathrm{~mol}
\end{aligned}
$$

Aluminium is produced from $\mathrm{Al}_{2} \mathrm{O}_{3}$ which contains $\mathrm{Al}^{3+} .3$ electrons are needed to produce each Al so 3 mol of electrons are needed to produce 1 mol of Al. This quantity of electrons will therefore deposit:

$$
\text { number of moles of } \mathrm{Al}=0.13 / 3 \mathrm{~mol}=0.045 \mathrm{~mol}
$$

As Al has a molar mass of $26.98 \mathbf{g ~ m o l}^{-1}$, this quantity corresponds to:

$$
\begin{aligned}
\text { mass of } \mathrm{Al} & =\text { number of moles } \times \text { molar mass } \\
& =0.045 \mathrm{~mol} \times 26.98 \mathrm{~g} \mathrm{~mol}^{-1}=1.2 \mathrm{~g}
\end{aligned}
$$

Answer: $\mathbf{1 . 2} \mathrm{g}$

- What products would you expect at the anode and the cathode on electrolysis of a 1 M aqueous solution of NiI_{2} ? Explain your answers.

At the cathode, there are two possible reduction reactions:

$$
\begin{array}{ll}
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{~s}) & E^{0}=-0.24 \mathrm{~V} \\
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq}) & E^{0}=-0.41 \mathrm{~V}
\end{array}
$$

Reduction of $\mathbf{N i}^{\mathbf{2 +}}(\mathrm{aq})$ is easier, even without considering an overpotential for water.

At the anode, there are two possible oxidation reactions:

$$
\begin{array}{ll}
2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} & E^{0}=-0.62 \mathrm{~V} \\
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} & E^{0}=-\mathbf{0 . 8 2 ~ V}
\end{array}
$$

Both reactions will have an overpotential but oxidation of iodine is easier and this will probably occur.

Overall, $\mathrm{Ni}(\mathrm{s})$ will be produced at the cathode and $\mathrm{I}_{2}(\mathrm{~g})$ will be produced at the anode.

- An electrochemical cell is consists of 1.0 L half-cells of $\mathrm{Fe} / \mathrm{Fe}^{2+}$ and $\mathrm{Cd} / \mathrm{Cd}^{2+}$ with the following initial concentrations: $\left[\mathrm{Fe}^{2+}\right]=0.800 \mathrm{M},\left[\mathrm{Cd}^{2+}\right]=0.200 \mathrm{M}$.
What is the initial $E_{\text {cell }}$ at $25^{\circ} \mathrm{C}$?

From the reduction potential table,

$$
\begin{aligned}
& E_{\text {cell }}{ }^{0}\left(\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{~s})\right)=-\mathbf{0 . 4 4} \mathrm{V} \\
& E_{\text {cell }}{ }^{0}\left(\mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cd}^{2+}(\mathrm{aq})\right)=-\mathbf{0 . 4 0} \mathrm{V}
\end{aligned}
$$

The $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half cell has the more negative reduction potential so it is the half cell that is turned around to act as the oxidation half cell: $E_{\text {cell }}{ }^{\mathbf{0}}\left(\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})\right.$ $+\mathrm{e}^{-}$) $=+\mathbf{0 . 4 4} \mathrm{V}$

In combination with the $\mathbf{C d}^{\mathbf{2 +}} / \mathbf{C d}$ reduction half cell, this gives an overall reaction and cell potential of:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{~s}) \quad E^{0}=((+0.44)+(-0.40)) \mathrm{V}=+0.04 \mathrm{~V}
$$

For this reaction with $\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]=0.800 \mathrm{M}$ and $\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]=0.200 \mathrm{M}$:

$$
Q=\frac{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]}=\frac{0.800}{0.200}
$$

For the $2 \mathrm{e}^{-}$reaction, the Nernst equation gives the cell potential as:

$$
\begin{aligned}
E_{\text {cell }} & =E^{\circ}-\frac{R T}{n F} \ln Q \\
& =(0.04 \mathrm{~V})-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})}{\left(2 \times 96485 \mathrm{C} \mathrm{~mol}^{-1}\right)} \ln \frac{0.800}{0.200}=+0.02 \mathrm{~V}
\end{aligned}
$$

Answer: + $\mathbf{0 . 0 2}$ V
What is $E_{\text {cell }}$ when $\left[\mathrm{Cd}^{2+}\right]$ reaches 0.15 M ?
$\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]$ has decreased from 0.200 M to 0.15 M : a change of 0.05 M . [$\left.\mathrm{Fe}^{2+}(\mathrm{aq})\right]$ will increase by the same amount: $\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]=(0.800+0.05) \mathrm{M}=0.85 \mathrm{M}$. Using the Nernst equation again gives:

$$
\begin{aligned}
E_{\text {cell }}=E^{\circ} & -\frac{R T}{n F} \ln Q \\
= & (0.04 \mathrm{~V})-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})}{\left(2 \times 96485 \mathrm{C} \mathrm{~mol}^{-1}\right)} \ln \frac{0.85}{0.15}=+0.02 \mathrm{~V}
\end{aligned}
$$

Answer: +0.02 V

What is $\left[\mathrm{Cd}^{2+}\right]$ when $E_{\text {cell }}$ reaches 0.015 V ?

$$
E_{\text {cell }}=(0.04 \mathrm{~V})-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})}{\left(2 \times 96485 \mathrm{C} \mathrm{~mol}^{-1}\right)} \ln \frac{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]}=+0.015 \mathrm{~V}
$$

so:

$$
\frac{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]}=7.0
$$

If the change from the initial concentrations is $x,\left[C^{2+}(a q)\right]=(0.200-x) M$ and $\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]=(0.800+x) \mathrm{M}$:

$$
\frac{0.800-x}{0.200+x}=7.0 \quad x=-0.075 \mathrm{M}
$$

So that $\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]=(0.200-0.075) \mathrm{M}=0.125 \mathrm{M}$.

Answer: $\mathbf{0 . 1 2 5} \mathbf{M}$
What are the equilibrium concentrations of both ions?

Using $E^{\circ}=\frac{R T}{n F} \ln K=0.04 \mathrm{~V}$ gives $K=22.5$
so:

$$
\frac{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]}=\mathbf{2 2 . 5}
$$

If the change from the initial concentrations is $x,\left[{C d^{2+}}^{2+}(a q)\right]=(0.200-x) M$ and $\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]=(0.800+x) \mathrm{M}$:

$$
\frac{0.800-x}{0.200+x}=22.5 \quad x=0.158 \mathrm{M}
$$

So that $\left[\mathrm{Cd}^{2+}(\mathrm{aq})\right]=(0.200-0.158) \mathrm{M}=\mathbf{0 . 0 4 2} \mathrm{M}$ and $\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]=(0.800+0.158)$ $\mathrm{M}=\mathbf{0 . 9 5 8} \mathrm{M}$

$\left[\mathrm{Cd}^{2+}\right]=0.042 \mathrm{M}$	$\left[\mathrm{Fe}^{2+}\right]=0.958 \mathrm{M}$

- At a certain temperature the following data were collected for the reaction shown.

$$
2 \mathrm{ICl}+\mathrm{H}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{HCl}
$$

Experiment	Initial [ICl] $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial [H2 $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Rate of formation of $\left[\mathrm{I}_{2}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.10	0.10	0.0015
2	0.20	0.10	0.0030
3	0.10	0.050	0.00075

Determine the rate law for the reaction.

Between experiments (1) and (2), $[\mathrm{ICl}]$ is doubled and $\left[\mathrm{H}_{2}\right]$ is constant. This change leads to a doubling of the rate: the rate is proportional to [ICI].

Between experiments (1) and (3), $[I C I]$ is constant and $\left[\mathrm{H}_{2}\right]$ is halved. This change leads to a halving of the rate: the rate is proportional to $\left[\mathrm{H}_{2}\right]$.

Overall:

$$
\text { rate }=k[\mathrm{ICl}]\left[\mathrm{H}_{2}\right]
$$

What is the value of the rate constant?

Using experiment (1), rate $=0.0015 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1},[\mathrm{ICl}]=0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{H}_{2}\right]=$ $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$:

$$
\begin{aligned}
& \text { rate }=k[\text { ICl }]\left[\mathrm{H}_{2}\right]=k\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)=0.0015 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{1} \\
& k=\left(0.0015 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right) /\left(0.10 \mathrm{~mol} \mathrm{~L}^{1}\right)\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)=0.15 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: $0.15 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

