A doctor recommends to a pregnant woman that she takes an iron supplement of 50 mg (as Fe$^{2+}$) daily. To achieve this, what mass (to the nearest mg) of iron(II) gluconate-2-water, FeC$_{12}$H$_{22}$O$_{14}$\cdot2H$_2$O, would be required?

What is the mass of each of the following at 298 K and 101 kPa pressure?

(i) argon (24.5 litre)

(ii) water (24.5 litre)

(iii) chlorine (12.25 litre)

(iv) zinc (1.00 mole)
The final step in the industrial production of urea, \(\text{CO(NH}_2\text{)}_2 \), is:

\[
\text{CO}_2(\text{g}) + 2\text{NH}_3(\text{g}) \rightarrow \text{H}_2\text{O}(\text{g}) + \text{CO(NH}_2\text{)}_2(\text{s}) \quad \Delta H^\circ = -90.1 \text{ kJ mol}^{-1}
\]

Using the following data, calculate the standard enthalpy of formation \(\Delta H^\circ_f \) of solid urea.

\[
\begin{align*}
\text{4NH}_3(\text{g}) + 3\text{O}_2(\text{g}) & \rightarrow 6\text{H}_2\text{O}(\text{g}) + 2\text{N}_2(\text{g}) \quad \Delta H^\circ = -1267.2 \text{ kJ mol}^{-1} \\
\text{C}(\text{s}) + \text{O}_2(\text{g}) & \rightarrow \text{CO}_2(\text{g}) \quad \Delta H^\circ = -393.5 \text{ kJ mol}^{-1} \\
\text{2H}_2(\text{g}) + \text{O}_2(\text{g}) & \rightarrow 2\text{H}_2\text{O}(\text{g}) \quad \Delta H^\circ = -483.6 \text{ kJ mol}^{-1}
\end{align*}
\]

\[\Delta H^\circ_f = \]

The formation of urea in this process is only spontaneous above 821 °C. What is the value of the entropy change \(\Delta S^\circ \) (in J K\(^{-1}\) mol\(^{-1}\)) for the reaction?

\[\Delta S^\circ = \]

Rationalise the sign of \(\Delta S^\circ \) in terms of the physical states of the reactants and products.