CHEM1612 Worksheet 10 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Reduction Potentials

- 1. Oxidising agents are themselves reduced the strongest oxidising agent is the most easily reduced. This is $Ag^+(aq)$ as it has the most positive E_{red}° value (it has the strongest attraction to electrons).
- 2. Reaction (1) will remain a reduction. Reaction (2) will reverse to become an oxidation, as Ag⁺(aq) is the strongest oxidising agent.
- Reaction (3) will remain a reduction. Reaction (4) will reverse to become an oxidation as $Zn^{2+}(aq)$ is the stronger reducing agent. It does not matter that they are both negative as it is the *difference* between the two E_{red}^0 values which determines the reaction.

Model 2: Voltaic Cells

- 1. The Zn/Zn^{2+} half reaction is proceeding as an oxidation as it has a *lower* E^0_{red} value than that for Sn^{2+}/Sn . When we flip a reduction to an oxidation, we reverse the sign of the potential.
- 2. The zinc electrode will *lose* mass and the tin electrode will *gain* mass.
- 3. Oxidation (always) takes place at the anode. Reduction (always) takes place at the cathode
- 4. (b) Electrons flow through the wire, from the zinc electrode towards the tin electrode.
- 5. The anode is negative and the cathode is positive.
- 6. SO₄²⁻(aq) moves into the zinc half cell (as cations are being made in the oxidation reaction in this cell). Na⁺(aq) moves into the tin half cell (as cations are being lost in this cell).
- 7. Cathode reduction: Ag⁺(aq) + e⁻ \rightarrow Ag(s). Anode oxidation: Cu(s) \rightarrow Cu²⁺(aq) + 2e⁻ $E^0_{cell} = [0.80 + (-0.34)] V = +0.46 V$
- 8. Cathode reduction: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$. Anode oxidation: $Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$ $E^{0}_{cell} = [0.34 + 0.14] \text{ V} = +0.48 \text{ V}$
- 9. Cathode reduction: $\operatorname{Sn^{2+}}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(s)$. Anode -oxidation: $\operatorname{Zn}(s) \to \operatorname{Zn^{2+}}(\operatorname{aq}) + 2e^{-}$ $E^0_{\text{cell}} = [-0.14 + 0.76] \text{ V} = +0.62 \text{ V}$
- 10. Couple the cells with (i) the most positive and (ii) the least positive (or most negative) reduction potentials. The latter is reversed to become the oxidation reaction.

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 and $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$; $E^{0}_{cell} = +1.56 \text{ V}$

- 11. (a) $NAD^+ + HCOO^- \rightarrow NADH + CO_2$ $E^\circ = (-0.105 + 0.20) V = +0.10 V$ NAD is reduced.
 - (b) $O_2 + 2H^+ + 2NADH \rightarrow H_2O + 2NAD^+$ $E^\circ = (+0.82 + 0.105) V = +0.925 V$ NAD is oxidised.