CHEM1612 Worksheet 12 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Galvanic Cells

- 1. The zinc electrode will *lose* mass and the tin electrode will *gain* mass.
- 2. $\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Zn}(s) \rightarrow \operatorname{Sn}(s) + \operatorname{Zn}^{2+}(\operatorname{aq})$
- 3. Zn is being oxidised and Sn^{2+} is being reduced. The Zn electrode is the anode. The Sn electrode is the cathode.
- 4. Electrons flow through the wire, from the zinc electrode towards the tin electrode.
- 5. The anode is negative and the cathode is positive.
- 6. $SO_4^{2-}(aq)$ moves into the zinc half cell (as cations are being made in the oxidation reaction in this cell). Na⁺(aq) moves into the tin half cell (as cations are being lost in this cell).

Model 2: Electrolytic Cells

- 1. The zinc electrode will *gain* mass and the tin electrode will *lose* mass.
- 2. $\operatorname{Sn}(s) + \operatorname{Zn}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Zn}(s)$
- 3. Zn is being reduced and Sn^{2+} is being oxidised. The Zn electrode is the cathode. The Sn electrode is the anode.
- 4. Electrons flow through the wire, from the tin electrode towards the zinc electrode.
- 5. The anode is positive and the cathode is negative.
- 6. $SO_4^{2-}(aq)$ moves into the tin half cell (as cations are being made in the oxidation reaction in this cell). Na⁺(aq) moves into the zinc half cell (as cations are being lost in this cell).

Model 3: Electrolysis of Water

- 1. $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$.
- 2. $F = (1.602 \times 10^{-19} \text{ C}) \times (6.022 \times 10^{23}) = 96485 \text{ C mol}^{-1}.$
- 3. Number of moles of electrons = $I \times t / F = (10.0 \text{ A}) \times (2.00 \times 60 \times 60 \text{ s}) / (96485 \text{ C mol}^{-1}) = 0.746 \text{ mol}$
- 4. From the half cell equation for the reduction of H_2O , $2e^-$ are required for each H_2 . Therefore, 0.746 mol will produce $\frac{1}{2} \times 0.746$ mol = 0.373 mol of H_2 .
- 5. From Q1, half as much O_2 will be produced: 0.187 mol.

Alternatively, from the half cell equation for the oxidation of H_2O , $4e^-$ are produced for each O_2 . Therefore, 0.746 mol will have been produced by $\frac{1}{4} \times 0.746$ mol = 0.187 mol of O_2 .

6. The reduction potential of water is -0.82 V so a cation with a *more* negative reduction potential should be used: Cr^{3+} , Al^{3+} , Mg^{2+} , Na^+ , Ca^{2+} or Li^+ ,

The oxidation potential of water is -1.23 V so an anion with a *more* negative oxidation potential should be used: Cl^{-} or $SO_4^{2^{-}}$.

 Na_2SO_4 or K_2SO_4 are commonly used.

Model 4: Rate of Reaction

- 1. Rate is defined as the change in concentration with time: $M s^{-1}$.
- 2. As [sucrose] decreases, [fructose] *increases* at the same rate.
- 3. Sucrose and H_3O^+ are both reactants and so their concentrations decrease with time, Fructose and glucose are both products and so their concentrations increase with time.
- 4. From the chemical equation, [NO(g)] will increase at exactly the same rate as $[NO_2(g)]$ decreases but $[O_2(g)]$ is produced at half the rate.

Model 5: The Rate Law

1. (a) The rate increases by a factor of 4 (i.e. it quadruples).

(b) The rate increases by a factor of 2 (i.e. it doubles)

- (c) The rate is unchanged.
- 2. (a) The rate doubles.
 - (b) The rate doubles.
 - (c) The rate quadruples (i.e. it increases by a factor of 4).
- 3. (a) $[lactose]_0$ is doubled and $[H_3O^+]$ is unchanged. The rate doubles.
 - (b) $[lactose]_0$ is unchanged and $[H_3O^+]$ is increased by a factor of 4. The rate increases by a factor of 4.
 - (c) The reaction is first order with respect to both lactose and H_3O^+ : x = 1 and y = 1. rate = $k[lactose]^1[H_3O^+]^1 = k[lactose][H_3O^+]$
 - (d) $[lactose]_0$ is decreased by a factor of 2. On its own, this change would half the rate. $[H_3O^+]$ is increased by a factor of 4. On its own, this change would increase the rate by 4.

When both changes are made together, the rate therefore doubles.

rate = $k \times (0.01 \text{ M}) \times (0.001 \text{ M}) = 0.00116 \text{ M s}^{-1}$ $k = 116 \text{ M}^{-1} \text{ s}^{-1}$

Using experiment (2),

rate = $k \times (0.02 \text{ M}) \times (0.001 \text{ M}) = 0.00232 \text{ M s}^{-1}$ $k = 116 \text{ M}^{-1} \text{ s}^{-1}$

Using experiment (3),

rate = $k \times (0.01 \text{ M}) \times (0.004 \text{ M}) = 0.00464 \text{ M s}^{-1}$ $k = 116 \text{ M}^{-1} \text{ s}^{-1}$