CHEM1612 Worksheet 13 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: The Atomic Symbol

1.		number of electrons	number of protons	number of neutrons
	(a)	12	12	12
	(b)	12	12	14
	(c)	35	35	44
				_
2.		charge	mass	
	(a)	+2	4	
	(b)	-1	0^{*}	
	(c)	+1	0*	
	(d)	0	0^{\dagger}	
3.		charge	mass	
	(a)	-1	0*	
	(b)	+1	1	

1

Model 2: Radioactive Decay

(c)

1.		change in number of neutrons (N)	change in number of protons (Z)
	(a)	reduced by 2	reduced by 2
	(b)	reduced by 1	increased by 1
	(c)	increased by 1	reduced by 1
	(d)	increased by 1	reduced by 1
	(e)	reduced by 1	unchanged
	(f)	unchanged	unchanged

0

2.

(1)	
(a)	²³⁴ 7h
(b)	$^{14}_{7}N$
(c)	${}^{11}_{5}B$
(d)	⁵⁵ 25Mn
(e)	¹² ₄ Be
(f)	⁹⁹ Tc

3.

	type of decay	change in mass number	change in N / Z
(a)	α decay	reduced by 4	(small) increase
(b)	β^{-} decay	no change	reduced
(c)	β^+ decay	no change	increased
(d)	electron capture	no change	increased
(e)	Neutron emission	reduced by 1	reduced
(f)	γ decay	no change	no change

^{*} The masses of an electron and a positron are $\approx 1/1800$ that of a proton or neutron.

[†] The rest mass of a photon is zero

Model 3: Predicting the Mode of Decay

1. $_{33}^{75}$ As has N = (75 - 33) = 42 and Z = 33. For this nuclide, N / Z = 1.3. $_{33}^{66}$ As has N = (66 - 33) = 33 and Z = 33. For this nuclide, N / Z = 1.0. After Z = 20, the N / Z ratio needs to exceed 1. The extra neutrons are needed to stabilize the large repulsion between the positively charged protons in the nucleus.

- 2. β^- decay.
- 3. β^+ decay or electron capture.
- 4. α decay.
- 5. For each of the following radioactive nuclides, calculate their N/Z ratios and hence predict the mode(s) of nuclear decay they are likely to undergo.
 - (a) ${}^{12}_{5}B$ has N/Z = 7/5 = 1.4. As this ratio is too high for this region, it will probably undergo β^{-} decay.
 - (b) $^{234}_{92}$ U has N/Z = 142/92 = 1.5. As Z > 83, it is too heavy to lie within the band and will probably undergo α decay to decrease its total mass.
 - (c) ${}^{127}_{57}$ La has N/Z = 70/57 = 1.2. As this ratio is too low for this region, it will probably undergo either β^+ emission or electron capture (or both).

Model 4: The Rate of Radioactive Decay

The number of radioactive nuclei decaying per unit time is proportional to the number present. If the initial number present is N_0 and the number remaining at time *t* is N_t then:

$$\ln \frac{N_t}{N_o} = -\lambda t$$
 where λ is the decay constant (units s⁻¹).

Critical thinking questions

1. If $N_t = N_0 / 2$,

$$\ln \frac{N_t}{N_o} = \ln \frac{1}{2} = -\lambda t_{1/2}$$
$$t_{1/2} = \ln(2) / \lambda \text{ or } \lambda = \ln(2) / t_{1/2}$$

2. Lucas Heights in Sydney makes many radioactive isotopes for medical applications in Australia and overseas.¹³¹I is used in treating thyroid cancers and in imaging. It has a half life of 8.02 days.

(a)
$$\lambda = \ln(2) / t_{1/2} = \ln(2) / (8.02 \text{ days}) = 0.0864 \text{ days}^{-1}$$

(b) As $N_t = 2.0$ mg when t = 2.000 days, the amount initially required, N_0 , is given by

$$\ln \frac{(2.0 \text{ mg})}{N_o} = -(0.0864 \text{ days}^{-1}) \times (2.000 \text{ days})$$

so

$$N_0 = 2.4 \text{ mg}$$

3. If $N_0 = 2.5 \times 10^6$ times the legal limit and N_t = the legal limit:

$$\frac{N_t}{N_o} = \frac{\text{the legal limt}}{2.5 \times 10^6 \times \text{the legal limit}} = \frac{1}{2.5 \times 10^6}$$
$$\ln \frac{1}{2.5 \times 10^6} = -(0.0864 \text{ days}^{-1}) \times t$$
$$t = 170 \text{ days}$$