Topics in the June 2014 Exam Paper for CHEM1901

Click on the links for resources on each topic.

2014-J-2:

• Nuclear and Radiation Chemistry

2014-J-3:

• Nuclear and Radiation Chemistry

2014-J-5:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Atomic Electronic Spectroscopy
- Ionic Bonding

2014-J-6:

- Lewis Structures
- VSEPR

2014-J-7:

- Lewis Structures
- VSEPR
- Types of Intermolecular Forces

2014-J-8:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2014-J-9:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2014-J-10:

- First and Second Law of Thermodynamics
- Electrochemistry

2014-J-11:

- First and Second Law of Thermodynamics
- Equilibrium and Thermochemistry in Industrial Processes

2014-J-12:

• Electrochemistry

2014-J-13:

• Batteries and Corrosion

2014-J-14:

• Batteries and Corrosion

Marks

6

• In March 2011 after a tsunami flooded the Fukushima Daiichi nuclear power plant, three of the six reactors went into meltdown, and by 31 March had released large quantities of the nuclides detailed in the table below.

Radioisotope	Initial activity of quantity released (10 ¹⁵ Bq)	Half-life
¹³¹ I	511	8.02 days
¹³⁷ Cs	13.6	30.17 years

Given that the only stable nuclide of iodine is 127 I, would you expect the primary decay mechanism for 131 I to be α , β^- , or β^+ decay? Briefly explain your reasoning.

¹³¹I has Z = 53 and N = 78 giving an N / Z ratio of 1.47. This ratio suggests that β^- will be the primary decay mechanism. α becomes impoortant after Z = 82.

This decay route will lower this ratio as it involves a neutron being converted into a proton and a β^- particle: *N* will decrease by 1 and *Z* will increase by 1.

Calculate the decay constant for ¹³¹I.

The decay constant, λ , is related to the half life, $t_{1/2} = \ln 2 / \lambda$:

 $\lambda = \ln 2 / t_{1/2} = \ln 2 / (8.02 \times 24 \times 60 \times 60) \text{ s}^{-1} = 1.00 \times 10^{-6} \text{ s}^{-1}$

Answer: $1.00 \times 10^{-6} \text{ s}^{-1}$

Calculate the initial mass of ¹³¹I released.

The initial activity of ¹³¹I is 511 × 10¹⁵ Bq or 511 × 10¹⁵ nuclei s⁻¹. As activity, $A = \lambda N$:

 $N = A / \lambda = 511 \times 10^{15}$ nuclei s⁻¹ / 1.00 × 10⁻⁶ s⁻¹ = 5.11 × 10²³ nuclei

The molar mass of 131 I is 131 g mol⁻¹ so 6.022×10^{23} nuclei has a mass of 131 g. Therefore:

 5.11×10^{23} nuclei corresponds to $5.11 \times 10^{23} / 6.022 \times 10^{23} \times 131$ g = 111 g

Answer: 111 g

THIS QUESTION CONTINUES ON THE NEXT PAGE.

activities:

Activities	¹³¹ I: 3.80 × 10⁻²⁴ Bq	¹³⁷ Cs: 1.27 × 10 ¹⁶ Bq
------------	--	---

Caesium has no biological role in the human body, and is usually only present in trace amounts. On ingestion, even non-radioactive Cs isotopes are considered toxic as they are capable of partially substituting for chemically similar elements. Name a chemically similar element. State one chemically-significant difference between ions of this element and Cs^+ ions.

As a +1 ion, Cs^+ is chemically similar to Na^+ and K^+ .

Cs⁺ is larger than either of these ions. This will lead it to have higher coordination numbers: more anions will fit around it in ionic solids and more donor atoms (such as OH₂) will coordinate to it than can fit on Na⁺ or K⁺.

Marks

6

 The molecular orbital energy level diagrams for H₂, H₂⁺, H₂⁻ and O₂ are shown below. Fill in the valence electrons for each species in its ground state and label the types of orbitals (σ, σ*, π, π*).

The bond lengths of H_2^+ and H_2^- are different. Which do you expect to be longer? Explain your answer.

 H_2^- will be longer. Both have bond order of 0.5, but H_2^- is a multi-electron system so is destabilised by electron-electron repulsion. H_2^+ is single electron system so has no electron-electron repulsion.

- Marks • Determine an electronic transition involving the n = 5 level of the He⁺ ion that emits 3 light in the visible region (400-700 nm) of the electromagnetic spectrum. Using Planck's relationship between wavelength and energy, $E = hc / \lambda$, visible light corresponds to the range: *E* (400 nm) = 6.626×10^{-34} J s $\times 2.998 \times 10^8$ m s⁻¹ / 400 $\times 10^{-9}$ m = 4.97×10^{-19} J *E* (700 nm) = 6.626×10^{-34} J s $\times 2.998 \times 10^8$ m s⁻¹ / 700 $\times 10^{-9}$ m = 2.84×10^{-19} J For a 1-electron ion like He⁺, the orbital energies are given by $E_n = -Z^2 E_R / n^2$ where Z = 2 for He⁺ and E_R is the Rydberg constant, 2.18 × 10⁻¹⁸ J. For a transition from n = 5 to another level n_f , the energy difference is: $\Delta E = -4 \times 2.18 \times 10^{-18} \times (1/n_{\rm f}^2 - 1/5^2)$ With $n_f = 11$, the transition is just outside the visible range. As n_f must be an integer, the lowest value of n_f is 12. Any value of n_f above this will also be in the visible. Describe one piece of experimental evidence supporting the conclusion that electrons 1 have wave-like character. **Examples include:** • The diffraction of electron beams. Electrons can be diffracted just like ligt waves. The standing wave structure of atoms leading to atomic line spectra. Electrons can only exist in discrete orbits with certain energies, leading to absorption and emission at certain wavelengths rather than at every wavelength. • Consider the melting points of the following solids, which all have the halite crystal 3 structure type. KC1 solid AgCl KBr NaCl 455 734 770 801 m.p. (°C) Rationalise the order of the melting points of KBr, KCl and NaCl in terms of the size of the constituents and the strength of the interactions holding them together. Melting an ionic solid involves breaking up the lattice: the more energy it takes to do this, the higher the melting point will be. The lattice energy depends on the: The crystal structure adopted: as these salts all adopt the same halite crystal structure type, this is not a factor here.
 - The charges on the cations and anions: as these salts all have a +1 cation and a -1 anion, this is not a factor here.
 - The size of the cation and anion: the smaller these are, the closer they can approach and the larger the lattice energy will be:

- (i) Br is bigger than Cl so KCl has a higher lattice energy and a higher melting point than KBr.
- (ii) K⁺ is larger than Na⁺ so NaCl has a higher lattice energy and a higher melting point than KCl.

The Ag^+ ion is intermediate in size between Na^+ and K^+ . Why does AgCl have a melting point considerably lower than both KCl and NaCl?

When the relative electronegativity of the anion and cation are very different as in NaCl and KCl, the bonding is predominately ionic. Melting the solid requires breaking up the ionic lattice with its strong and long distance interactions.

As Ag⁺ is much less electronegative than Na⁺ and K⁺, AgCl is much less ionic than NaCl and KCl and has the lowest melting point. There is considerable ionic character to the bonding in AgCl.

•	Complete the table below showing the following species.	ne Lewis structures and	the predicted shapes of	Ma

arks 8

Species	Lewis Structure	Approximate F-X-F bond angle(s)	Name of molecular shape
SiF4	:F: :F.—Si—F: :F:	109.5°	tetrahedral
SF4	;F: . :F. S. F: :F: :F:	90°, 120° and 180°	'see-saw'
XeF ₃ ⁺	;F: :FXeF:	90° and 180°	'T-shaped'
XeF ₃ ⁻	;F: . :F.—;Xe;—F:	90° and 180°	T-shaped

• (*R*)-Carvone is a typical terpene, a class of compounds widely distributed in nature. On the structure of (*R*)-carvone below, circle all of the carbon atoms with trigonal planar geometry.

All terpenes are derived from isoprene and many, such as myrcene, (R)-citronellal and geraniol, are used in the perfume industry.

Explain the differences in boiling points of these four compounds in terms of the type and size of the intermolecular forces present.

All the molecules experience dispersion forces. Dispersion forces are related to the polarisability of a molecule and increase as the number of electrons in the molecule increases (i.e. they increase with molecular size).

Dispersion forces are the only intermolecular forces present in isoprene and myrcene, but are stronger for the larger myrcene, so it has the higher boiling point.

Myrcene, citronellal and geraniol are all of similar size, so have similar dispersion forces.. Citronellal has a polar C=O group so can engage in dipoledipole interactions so has a higher boiling point than myrcene.

Geraniol contains an –OH group so can engage in hydrogen bonding, a particularly strong intermolecular force, so it has a higher boiling point than citronellal.

- Marks 5
- When 10.0 g of solid ammonium carbamate NH₂CO₂NH₄ is placed in an evacuated 1.0 L flask at 25 °C, the pressure in the flask rises to 88 mmHg. Write a balanced equation for the decomposition of ammonium carbamate into ammonia gas and carbon dioxide.

 $NH_2CO_2NH_4(s) \rightarrow 2NH_3(g) + CO_2(g)$

Calculate the equilibrium constant in terms of partial pressures, K_p , for the decomposition of ammonium carbamate.

The total pressure at equilibrium is 88 mmHg corresponding to 88 / 760 atm. The total pressure is the sum of the partial pressures:

 $P(NH_3) + P(CO_2) = 88/760$ atm = 0.12 atm

From the chemical equation, $P(NH_3) = 2 \times P(CO_2)$ and so:

3 × P(CO₂(g) = 0.12 atm P(CO₂) = 0.039 atm and P(NH₃) = 0.077 atm

The equilibrium constant in terms of partial pressures is given by:

$$K_{\rm p}$$
 (1) = $P(\rm NH_3)^2 P(\rm CO_2) = (0.077)^2 (0.039) = 2.3 \times 10^{-4}$

Answer: 2.3×10^{-4}

This flask is connected by a hose (of negligible volume) to another 1.0 L flask at 25 °C containing 1.00 atm of $H_2S(g)$. A tap between the flasks is opened and the gaseous contents allowed to mix. Given the following reaction data:

NH₄SH(s) \iff NH₃(g) + H₂S(g) $K_p = 9.40 \times 10^{-2}$ at 25 °C,

calculate K_p for the new equilibrium that is established, *viz*.

 $NH_2CO_2NH_4(s) + H_2S(g) \implies NH_3(g) + CO_2(g) + NH_4SH(s)$

For NH₄SH(s) \implies NH₃(g) + H₂S(g), the equilibrium constant is:

 $K_{\rm p}(2) = P(\rm NH_3) P(\rm H_2S)$

For $NH_2CO_2NH_4(s) + H_2S(g) \implies NH_3(g) + CO_2(g) + NH_4SH(s)$

 $K_{\rm p}(3) = P(\rm NH_3) P(\rm CO_2) / P(\rm H_2S)$

The relationship between $K_p(1)$, $K_p(2)$ and $K_p(3)$ is thus:

 $K_{p}(1) / K_{p}(2) = P(NH_{3})^{2} P(CO_{2}) / P(NH_{3}) P(H_{2}S)$ = P(NH_{3}) P(CO_{2}) / P(H_{2}S) = K_{p}(3)

 $K_{\rm p}$ (3) = 2.3 × 10⁻⁴ / 9.40 × 10⁻² = 2.4 × 10⁻³

Answer: 2.4×10^{-3}

Hence calculate the total pressure in the flasks at equilibrium.

The initial partial pressures and equilibrium constant are given in 2014-J-8, $P(H_2S) = 1.00$ atm, $P(CO_2) = 0.039$ atm and $P(NH_3) = 0.077$ atm) and $K_p(3) = 2.4$ \times 10⁻³. A reaction table can be used to work out the equilibrium partial pressures.

A reaction table can be used to calculate the equilibrium pressures. For the gases in the reaction $NH_2CO_2NH_4(s) + H_2S(g) \implies NH_3(g) + CO_2(g) + NH_4SH(s)$:

	H ₂ S(g)		NH ₃ (g)	CO ₂ (g)
initial	1.00	-	0.077	0.039
change	- <i>x</i>		+x	+x
equilibrium	1.00 - <i>x</i>		0.077 + x	0.039 + x

Hence,

 $K_{\rm p} = P(\rm NH_3) P(\rm CO_2) / P(\rm H_2S)$ $= (0.077 + x)(0.039 + x) / (1.00 - x) = 2.4 \times 10^{-3}$

Expanding this gives:

 $0.00298 + 0.116x + x^2 = 2.4 \times 10^{-3} - 2.4 \times 10^{-3}x$ $x^{2} + 0.118x + 0.000533 = 0$

Solving this gives x = -0.0047 or x = -0.11. The latter would give negative partial pressures for NH₃ and CO₂. Using the former:

 $P(H_2S) = (1.00 + 0.0047)$ atm, $P(NH_3) = (0.077 - 0.0047)$ atm and $P(CO_2) = (0.039 + 0.0047)$ atm.

The total pressure is then $P(H_2S) + P(NH_3) + P(CO_2) = 1.11$ atm.

Answer: 1.11 atm

Marks • At a temperature of absolute zero, the entropy of deuterated methane CH₃D is 2 $12 \text{ J K}^{-1} \text{ mol}^{-1}$. Explain the significance of this value and suggest an explanation for it The 3rd Law of Thermodynamics is sometimes written in the form below: The entropy of a perfect crystal at absolute zero is exactly equal to zero. ٠ CH₃D will adopt the same crystal structure as CH₄ as there is no difference in its shape or size. The relative position of the D atom in neighbouring molecules, however, will be completely random as there will minimal energy difference between them. A crystal of CH₃D will not be perfect even at absolute zero. 3 A concentration cell is constructed from two beakers containing 1 M NiCl₂ and 0.002 M NiCl₂. Describe the overall change that occurs as the concentration cell runs. The overall process occurring is to equalise the concentrations: In the beaker containing 0.002 M NiCl₂, oxidation of Ni(s) will occur to produce Ni²⁺(aq) ions. This will increase [Ni²⁺(aq)] in this beaker. The electrons from this oxidation will flow through the wire to the electrode in the second beaker. • In this second beaker containing 1 M NiCl₂, reduction of Ni²⁺(aq) will occur. This will decrease [Ni²⁺(aq)]. The cell will continue to operate until the concentrations have equalised. • What would be the major driving force for the overall reaction, enthalpy or entropy? Explain your answer. There is enthalpy change in this process: the standard electrode potential is zero. The process is driven entirely by entropy: it is unfavourable for the concentration difference to be present.

CHEM1901/3

Marks • Consider the following standard free energies of formation at 1000 K. 4 Compound $Li_2O(s)$ CO(g) $CO_2(g)$ $Fe_2O_3(s)$ $\Delta_{\rm f} G^{\circ} / \text{kJ mol}^{-1}$ -396 -200-562 -466 Predict whether the following oxides can be reduced to metals by carbon at that temperature, and state whether the products could be CO, CO₂ or both. $Fe_2O_3(s)$ For reduction by C(s), the possible reactions are: (i) $Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$ (ii) $Fe_2O_3(s) + 3/2C(s) \rightarrow 2Fe(s) + 3/2CO_2(g)$ Using $\Delta G^{\circ} = \Sigma m \Delta_{\rm f} G^{\circ}$ (products) - $\Sigma n \Delta_{\rm f} G^{\circ}$ (reactants): $\Delta G^{\circ} = 3\Delta_{\rm f} G^{\circ}({\rm CO}({\rm g})) - \Delta_{\rm f} G^{\circ}({\rm Fe}_2 {\rm O}_3({\rm s}))$ **(i)** $= [(3 \times -200) - (-562)] \text{ kJ mol}^{-1} = -38 \text{ kJ mol}^{-1}$ $\Delta G^{\circ} = 3/2\Delta_{\rm f} G^{\circ}({\rm CO}_2({\rm g})) - \Delta_{\rm f} G^{\circ}({\rm Fe}_2{\rm O}_3({\rm s}))$ (ii) $= [(3/2 \times -396) - (-562)] \text{ kJ mol}^{-1} = -32 \text{ kJ mol}^{-1}$ Both reactions are possible and have similar ΔG° values. Both CO and CO₂ are possible products. $Li_2O(s)$ For reduction by C(s), the possible reactions are: (i) $Li_2O(s) + C(s) \rightarrow 2Li(s) + CO(g)$ $Li_2O(s) + 1/2C(s) \rightarrow 2Li(s) + 1/2CO_2(g)$ (ii) Using $\Delta G^{\circ} = \Sigma m \Delta_f G^{\circ}$ (products) - $\Sigma n \Delta_f G^{\circ}$ (reactants): $\Delta G^{\circ} = \Delta_{\rm f} G^{\circ}({\rm CO}({\rm g})) - \Delta_{\rm f} G^{\circ}({\rm Li}_2{\rm O}({\rm s}))$ **(i)** $= [(-200) - (-466)] \text{ kJ mol}^{-1} = +266 \text{ kJ mol}^{-1}$ $\Delta G^{\circ} = 1/2\Delta_{\rm f} G^{\circ}({\rm CO}_2({\rm g})) - \Delta_{\rm f} G^{\circ}({\rm Li}_2{\rm O}({\rm s}))$ (ii) $= [(1/2 \times -396) - (-466)] \text{ kJ mol}^{-1} = +268 \text{ kJ mol}^{-1}$ Neither reaction is possible.

A voltaic cell consists of Cd^{2+}/Cd and Ag^{+}/Ag half cells with initial concentrations of $[Cd^{2+}] = 1.00 \text{ M}$ and $[Ag^{+}] = 0.60 \text{ M}$. Each half cell contains 1.00 L of solution.

What is the voltage of the cell at 20 °C after equilibrium has been reached?

0 V

What are the concentrations of the $Cd^{2+}(aq)$ and the $Ag^{+}(aq)$ ions at 20 °C after equilibrium has been reached?

The standard reduction half-cell reactions are (from the data sheet):

$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	$E^{\circ} = -0.40 \text{ V}$
$Ag^+(aq) + e^- \rightarrow Ag(s)$	$E^{\circ} = +0.80 \text{ V}$

As the $\operatorname{Cd}^{2+}/\operatorname{Cd}$ value is the least positive, it is reversed and the reaction and cell potential are:

$$2Ag^{+}(aq) + Cd(s) \rightarrow 2Ag(s) + Cd^{2+}(aq)$$

$$E^{\circ} = (+0.40 \text{ V}) + (+0.80 \text{ V}) = +1.20 \text{ V}$$

Using $E^{\circ} = \frac{RT}{nF} \ln K$, the equilibrium constant for this 2 e⁻ process at T = 20 °C is:

$$K = \exp\left(\frac{(1.20 \text{ V}) \times 2 \times (96485 \text{ C mol}^{-1})}{(8.314 \text{ J K}^{-1} \text{ mol}^{-1}) \times (293 \text{ K})}\right) = 2.03 \times 10^{44}$$

The equilibrium constant is so large that the reaction essentially goes to completion. Initially, $[Cd^{2+}(aq)]_{initial} = 1.00 \text{ M}$ and $[Ag^{+}(aq)]_{initial} = 0.60 \text{ M}$. If essentially all of the $Ag^{+}(aq)$ reacts then $[Cd^{2+}(aq)] = 1.30 \text{ M}$. If the small amount of $Ag^{+}(aq)$ left over has $[Ag^{+}(aq)] = x \text{ M}$:

$$E_{\text{cell}} = E^{\circ} - \frac{RT}{nF} \ln Q = E^{\circ} - \frac{RT}{2F} \ln \frac{[\text{Cd}^{2+}(\text{aq})]}{[\text{Ag}^{+}(\text{aq})]^{2}} = 0$$

= (1.20 V) - $\frac{(8.314 \text{ J K}^{-1} \text{ mol}^{-1}) \times (293 \text{ K})}{2 \times (96485 \text{ C mol}^{-1})} \ln \frac{(0.13)}{[\text{Ag}^{+}(\text{aq})]^{2}}$

This gives $[Ag^+(aq)] = 2.6 \times 10^{-21}$

 $[Cd^{2+}]_{eq} = 1.3 M$

$$[Ag^+]_{eq} = 2.6 \times 10^{-21} M$$

 LiMn₂O₄ (s) is an infinite network solid with the spinel-type structure, shown below. White circles are Li atoms, black circles are Mn atoms and grey circles are oxygen atoms. Dashed lines represent the unit cell.

What are the most important types of chemical bonds responsible for making $LiMn_2O_4$ a stable solid?

Ionic bonds

 $LiMn_2O_4$ is commonly used as a cathode in rechargeable lithium-ion batteries. The battery is charged by moving Li^+ ions out of this cathode to give $Li_{1-x}Mn_2O_4$. Explain how this is possible.

The structure contains channels through which the Li^+ ions can diffuse. When Li^+ is removed, the oxidation of Mn increases to ensure that charge balance is maintained.

The anode is C (graphite), which gives Li_xC_6 on charging. Describe how the lithium is incorporated into the graphite anode.

Graphite consists of hexagonal sheets. The bonding between the carbon atoms in the sheets is strong but the forces between the sheets are weak. The Li⁺ ions can occupy ('intercalate') the space between the sheets.

For every Li⁺ that is incorporated, an electron is transferred onto the carbon atoms and is delocalised over the sheets.

THIS QUESTION IS CONTINUED ON THE NEXT PAGE

CHEM1901/1903

Write out the anode and cathode half-cell reactions, and the overall cell reaction, for this battery as it discharges.

Marks 5

Cathode

 $Li_{1-x}Mn_2O_4 + xLi^+ + xe^- \rightarrow LiMn_2O_4(s)$

Anode

 $Li_xC_6 \rightarrow xLi^+ + xe^- + C_6$

Overall

Li _{1-x} Mn ₂	$O_4 + Li_x C_6 \rightarrow LiMn_2O_4(s) + C_6$
-----------------------------------	---

Many researchers are exploring the possibility of replacing Li⁺ with Na⁺ in these batteries, because sodium is much cheaper and less toxic than lithium. Explain two potential *disadvantages* of switching to sodium, in terms of battery performance.

Na is heavier than Li: the batteries will need to be heavier.

 Na^+ is larger than Li^+ so the diffusion of the ions will be slower: the rate at which the battery discharges and recharges will be slower.

Na is more reactive: there are safety and stability considerations due to reactions with water for example.

Page Total: