CHEM1902/4 Answers to Problem Sheet 11

1. (a) $\mathrm{K}_{2}\left[\mathrm{PtF}_{6}\right]$

Potassium hexafluoridoplatinate(IV)
(b) $\quad\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Tetramminedichloridocobalt(III) chloride - 2 - water.
2. (a) tetraamminezinc(II) sulfate-2-water
$\left[\mathbf{Z n}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{\mathbf{4}} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
(b) tetraaquaoxalatochromium(III) ion
$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) 4_{4}\right]^{+}$
3.

(a)	Mn	[Ar] (4s) $\left.{ }^{\mathbf{(3 d}} \mathbf{3}\right)^{5}$	(b)	Cr	$[\mathrm{Ar}](4 s)^{1}(3 d){ }^{5}$
(c)	Ni^{2+}	[Ar] (3d) ${ }^{8}$	(d)	Fe	[Ar] (4s) ${ }^{2}(3 d)^{6}$
(e)	Fe^{3+}	[Ar] (3d) ${ }^{5}$	(f)	Cu^{2+}	[Ar] (3d) ${ }^{9}$
(f)	Zn^{2+}	[Ar] (3d) ${ }^{10}$			

4. $\quad\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ can exist as two geometric isomers:

5. Coordination isomers have a ligand and a counter ion exchanged.
$\left[\mathrm{CrCl}\left(\mathrm{OH}_{2}\right)_{5}\right] \mathrm{SO}_{4}$ has a Cl ion as a ligand and $\mathrm{SO}_{4}{ }^{2}$ as a counter ion.
(c) $\quad\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ is a coordination isomer: it has a $\mathrm{SO}_{4}{ }^{2}$ ion as a ligand and Cl^{-}as a counter ion. (Note that $\mathrm{SO}_{4}{ }^{2-}$ coordinates to a metal using oxygen atoms rather than the sulfur.)
6. (a) $\quad \mathbf{A g}^{+}$will react with uncoordinated Cl^{-}to form $\mathrm{AgCl}(\mathrm{s})$. As it reacts with two Cl^{-}ions per formula unit, there must be $2 \mathrm{Cl}^{-}$counter ions. The remaining $2 \mathrm{Cl}^{-}$ions and the $4 \mathrm{NH}_{3}$ molecules are coordinated to the metal.

The oxidation number of the metal is +IV. The complex ion is thus $\left[\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{N H}_{3}\right)_{4}\right]^{\mathbf{2 +}}$.

The coordination compound is $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$.
The name of this compound is tetraamminedichloridoplatinum(IV) chloride.
(b) With $2 \mathrm{Cl}^{-}$and $\mathbf{4} \mathrm{NH}_{3}$ ligands, two isomers are possible:

cis-

trans-
(c) Geometric (cis and trans) isomerism is possible (as above).
(d) Platinum is in group 10 so $\operatorname{Pt}(\mathrm{IV})$ has $(10-4)=6 d$-electrons: $5 d^{6}$.
7. (a) Between experiments (2) and (4), $\left[\mathrm{Fe}^{2+}\right]$ and $\left[\mathrm{O}_{2}\right]$ are unchanged. $\left[\mathrm{H}^{+}\right]$is doubled and this leads the rate to double. The reaction is first-order with respect to $\left[\mathrm{H}^{+}\right]$.

Between experiments (3) and (4), $\left[\mathrm{Fe}^{2+}\right]$ and $\left[\mathrm{H}^{+}\right]$are unchanged. $\left[\mathrm{O}_{2}\right]$ is doubled and this doubles the rate: the reaction is first-order with respect to $\left[\mathrm{O}_{2}\right]$.

Between experiments (1) and (3), $\left[\mathrm{O}_{2}\right]$ is unchanged. $\left[\mathrm{Fe}^{2+}\right]$ and $\left[\mathrm{H}^{+}\right]$are both doubled and this leads to the rate increasing by a factor of 16 . As the reaction is first-order with respect to $\left[\mathrm{H}^{+}\right]$, the rate would double because of the doubling in $\left[\mathrm{H}^{+}\right]$. The doubling in $\left[\mathrm{Fe}^{2+}\right]$ therefore increases the rate by a factor of 8 : the reaction is third-order $\left(2^{3}=8\right)$ with respect to $\left[\mathrm{Fe}^{2+}\right]$.

Overall,

$$
\text { rate }=k\left[\mathrm{Fe}^{2+}\right]^{3}\left[\mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right]
$$

(b) Using the first experiment, $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{O}_{2}\right]=1 \times 10^{-\mathbf{3}} \mathrm{M}$ and $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$. The rate is $5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. Using the rate equation from (a):

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{Fe}^{2+}\right]^{3}\left[\mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right] \\
& =k \times\left(1 \times 10^{-3} \mathrm{M}\right)^{3} \times\left(1 \times 10^{-3} \mathrm{M}\right) \times(0.1 \mathrm{M})=5 \times 10^{4} \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

Hence, $k=5 \times 10^{9} \mathrm{M}^{-4} \mathrm{~s}^{-1}$. The same value is obtained using the data from the other experiments.

The units of k are obtained by matching the units on the right and lefthand side of the rate equation.

The rate is the change in concentration with time and has units of "M s ${ }^{-1}$ ".
On the left-hand side of the rate law, $\left[\mathrm{Fe}^{2+}\right]^{3}\left[\mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right]$has units of

$$
\mathbf{M}^{3} \times \mathbf{M} \times \mathbf{M}=\mathbf{M}^{5} .
$$

To match, k must have units of " $\mathrm{M}^{-4} \mathrm{~s}^{-1}$ ":

$$
\mathbf{M} \mathbf{s}^{-1}=\left(\mathbf{M}^{-4} \mathbf{s}^{-1}\right) \times \mathbf{M}^{5}
$$

(c) From the chemical equation, $4 \mathbf{~ m o l}$ of Fe^{3+} are made for every $\mathbf{1} \mathbf{~ m o l}$ of O_{2} that is lost: rate of formation of $\mathrm{Fe}^{3+}=4 \times$ rate of loss of O_{2}.

In experiment (3), the rate of loss of O_{2} is $8 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$ so the rate of formation of $\mathrm{Fe}^{3+}=4 \times\left(8 \times 10^{-3}\right)=3 \times 10^{-2} \mathrm{M} \mathrm{s}^{-1}$.
(d) When $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{O}_{2}\right]=4 \times 10^{-3} \mathrm{M}$ and $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$, the rate law gives:

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{Fe}^{2+}\right]^{3}\left[\mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right] \\
& =\left(5 \times 10^{9} \mathrm{M}^{-4} \mathrm{~s}^{-1}\right) \times\left(\mathbf{4} \times 10^{-3} \mathrm{M}\right)^{3} \times\left(4 \times 10^{-3} \mathrm{M}\right) \times(0.1 \mathrm{M}) \\
& =0.128 \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

As 4 mol of Fe^{2+} are consumed for every 1 mol of O_{2}, the rate of loss of Fe^{2+} is $(\mathbf{4} \times \mathbf{0 . 1 2 8}) \mathrm{M} \mathrm{s}^{-1}=0.5 \mathrm{M} \mathrm{s}^{-1}$.
8. (a) \quad As $_{1 / 2}=\frac{\ln 2}{k}, k=\frac{\ln 2}{t_{1 / 2}}=\frac{\ln 2}{6.00 \times 10^{4} \mathrm{~s}^{-1}}=1.16 \times 10^{-5} \mathrm{~s}^{-1}$
(b) For a first-order reaction,

$$
\ln \frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}=-k t
$$

After 1 hour $=(60 \times 60) s=3600 \mathrm{~s}$, the fraction that remain will be:

$$
\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}=\mathrm{e}^{-\left(1.16 \times 10^{-5} \times 3600\right)}=0.959
$$

The percentage that will have reacted is $\mathbf{4 . 1 \%}$.
9. The Arrhenius equation relates the rate constant with the temperature:

$$
k=A \mathrm{e}^{-E \mathbf{a} / R T}
$$

If the rate constant is known at two temperatures, this can be rewritten as:

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

At $30{ }^{\circ} \mathrm{C}, \mathrm{T}=(273+\mathbf{3 0})=303 \mathrm{~K}$ and k is $5.1 \times 10^{6} \mathrm{~s}^{-1}$. At $50{ }^{\circ} \mathrm{C}, \mathrm{T}=(273+50)=$ 323 K and k is $1.9 \times \mathbf{1 0}^{\mathbf{7}} \mathrm{s}^{\mathbf{- 1}}$:

$$
\ln \left(\frac{1.9 \times 10^{7} \mathrm{~s}^{-1}}{5.1 \times 10^{6} \mathrm{~s}^{-1}}\right)=\frac{E_{\mathrm{a}}}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)}\left(\frac{1}{(303 \mathrm{~K})}-\frac{1}{(323 \mathrm{~K})}\right)
$$

Hence $E_{\mathrm{a}}=54000 \mathrm{~J} \mathrm{~mol}^{-1}=54 \mathrm{~kJ} \mathrm{~mol}^{-1}$
This is a fairly typical activation energy and presumably corresponds, in the present case, to the partial breaking of the weak N -N bond in $\mathrm{N}_{2} \mathrm{O}_{4}$. An activation energy of this approximate size is quite common and leads to the 'rule of thumb'
that the rate is doubled by increasing the temperature by $10{ }^{\circ} \mathrm{C}$. In this example, the temperature increases from $30{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and the rate quadruples.

At either temperature, $k=A \mathrm{e}^{-E_{\mathrm{a}} / R T}$ so using $k=5.1 \times 10^{6} \mathrm{~s}^{-1}$ at $T=303 \mathrm{~K}$:
$5.1 \times 10^{6} \mathrm{~s}^{-1}=A \times \mathrm{e}^{-(54000 /(8.314 \times 303)}$ so $\mathrm{A}=8.6 \times 10^{15} \mathrm{~s}^{-1}$.

