CHEM1902/4 Answers to Problem Sheet 11

1. (a) $K_2[PtF_6]$

Potassium hexafluoridoplatinate(IV)

(b) $[CoCl_2(NH_3)_4]Cl\cdot 2H_2O$

Tetramminedichloridocobalt(III) chloride – 2 – water.

2. (a) tetraamminezinc(II) sulfate-2-water

[Zn(NH₃)₄]SO₄·2H₂O

(b) tetraaquaoxalatochromium(III) ion

$[Cr(C_2O_4)(H_2O)_4]^+$

3.	(a)	Mn	$[Ar] (4s)^2 (3d)^5$	(b)	Cr	$[Ar] (4s)^{1} (3d)^{5}$
	(c)	Ni^{2+}	$[Ar] (3d)^{8}_{-}$	(d)	Fe	[Ar] $(4s)^2(3d)^6$
	(e)	Fe ³⁺	$[Ar] (3d)^5$	(f)	Cu^{2+}	$[Ar] (3d)^9$
	(f)	Zn^{2+}	$[Ar] (3d)^{10}$			

4. [PtCl₂(NH₃)₂] can exist as two geometric isomers:

- 5. Coordination isomers have a ligand and a counter ion exchanged. $[CrCl (OH_2)_5]SO_4$ has a Cl⁻ ion as a ligand and SO_4^{2-} as a counter ion.
 - (c) $[Cr(OH_2)_5SO_4]Cl$ is a coordination isomer: it has a SO_4^{2-} ion as a ligand and Cl- as a counter ion. (Note that SO_4^{2-} coordinates to a metal using oxygen atoms rather than the sulfur.)
- 6. (a) Ag^+ will react with uncoordinated CI⁻ to form AgCl(s). As it reacts with two CI⁻ ions per formula unit, there must be 2CI⁻ counter ions. The remaining 2CI⁻ ions and the 4NH₃ molecules are coordinated to the metal.

The oxidation number of the metal is +IV. The complex ion is thus $[PtCl_2(NH_3)_4]^{2+}$.

The coordination compound is [PtCl₂(NH₃)₄]Cl₂.

The name of this compound is tetraamminedichloridoplatinum(IV) chloride.

(b) With 2Cl⁻ and 4NH₃ ligands, two isomers are possible:

- (c) Geometric (*cis* and *trans*) isomerism is possible (as above).
- (d) Platinum is in group 10 so Pt(IV) has (10-4) = 6 d-electrons: $5d^6$.

7.

(a)

Between experiments (2) and (4), $[Fe^{2+}]$ and $[O_2]$ are unchanged. $[H^+]$ is doubled and this leads the rate to double. The reaction is first-order with respect to $[H^+]$.

Between experiments (3) and (4), $[Fe^{2+}]$ and $[H^+]$ are unchanged. $[O_2]$ is doubled and this doubles the rate: the reaction is first-order with respect to $[O_2]$.

Between experiments (1) and (3), $[O_2]$ is unchanged. $[Fe^{2^+}]$ and $[H^+]$ are both doubled and this leads to the rate increasing by a factor of 16. As the reaction is first-order with respect to $[H^+]$, the rate would double because of the doubling in $[H^+]$. The doubling in $[Fe^{2^+}]$ therefore increases the rate by a factor of 8: the reaction is third-order ($2^3 = 8$) with respect to $[Fe^{2^+}]$.

Overall,

rate = $k[Fe^{2+}]^3[O_2][H^+]$

(b) Using the first experiment, $[Fe^{2+}] = [O_2] = 1 \times 10^{-3}$ M and $[H^+] = 0.1$ M. The rate is 5×10^{-4} mol L⁻¹ s⁻¹. Using the rate equation from (a):

rate =
$$k[Fe^{2+}]^3[O_2][H^+]$$

= $k \times (1 \times 10^{-3} \text{ M})^3 \times (1 \times 10^{-3} \text{ M}) \times (0.1 \text{ M}) = 5 \times 10^4 \text{ M s}^{-1}$

Hence, $k = 5 \times 10^9$ M⁻⁴ s⁻¹. The same value is obtained using the data from the other experiments.

The units of k are obtained by matching the units on the right and lefthand side of the rate equation.

The rate is the change in concentration with time and has units of "M s⁻¹".

On the left-hand side of the rate law, $[Fe^{2+}]^3[O_2][H^+]$ has units of

$$M^3 \times M \times M = M^5.$$

To match, k must have units of " M^{-4} s⁻¹":

$$M s^{-1} = (M^{-4} s^{-1}) \times M^5$$

(c) From the chemical equation, 4 mol of Fe^{3+} are made for every 1 mol of O_2 that is lost: rate of formation of $Fe^{3+} = 4 \times rate$ of loss of O_2 .

In experiment (3), the rate of loss of O₂ is 8×10^{-3} M s⁻¹ so the rate of formation of Fe³⁺ = $4 \times (8 \times 10^{-3}) = 3 \times 10^{-2}$ M s⁻¹.

(d) When $[Fe^{2^+}] = [O_2] = 4 \times 10^{-3} \text{ M}$ and $[H^+] = 0.1 \text{ M}$, the rate law gives:

rate =
$$k[Fe^{2^+}]^3[O_2][H^+]$$

= $(5 \times 10^9 \text{ M}^{-4} \text{ s}^{-1}) \times (4 \times 10^{-3} \text{ M})^3 \times (4 \times 10^{-3} \text{ M}) \times (0.1 \text{ M})$
= 0.128 M s⁻¹

As 4 mol of Fe^{2+} are consumed for every 1 mol of O₂, the rate of loss of Fe^{2+} is (4 × 0.128) M s⁻¹ = 0.5 M s⁻¹.

8. (a) As
$$t_{1/2} = \frac{\ln 2}{k}$$
, $k = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{6.00 \times 10^4 \text{ s}^{-1}} = 1.16 \times 10^{-5} \text{ s}^{-1}$

(b) For a first-order reaction,

$$\ln\frac{[A]}{[A]_0} = -kt$$

After 1 hour = (60×60) s = 3600 s, the fraction that remain will be:

$$\frac{[A]}{[A]_0} = e^{-(1.16 \times 10^{-5} \times 3600)} = 0.959$$

The percentage that will have reacted is 4.1%.

9. The Arrhenius equation relates the rate constant with the temperature:

 $k = A e^{-E_a/RT}$

If the rate constant is known at two temperatures, this can be rewritten as:

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

At 30 °C, T = (273 + 30) = 303 K and k is 5.1×10^6 s⁻¹. At 50 °C, T = (273 + 50) = 323 K and k is 1.9×10^7 s⁻¹:

$$\ln\left(\frac{1.9\times10^{7} \text{ s}^{-1}}{5.1\times10^{6} \text{ s}^{-1}}\right) = \frac{E_{a}}{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})} \left(\frac{1}{(303 \text{ K})} - \frac{1}{(323 \text{ K})}\right)$$

Hence $E_a = 54000 \text{ J mol}^{-1} = 54 \text{ kJ mol}^{-1}$

This is a fairly typical activation energy and presumably corresponds, in the present case, to the partial breaking of the weak N-N bond in N_2O_4 . An activation energy of this approximate size is quite common and leads to the 'rule of thumb'

that the rate is doubled by increasing the temperature by 10 °C. In this example, the temperature increases from 30 °C to 50 °C and the rate quadruples.

At either temperature, $k = A e^{-E_a/RT}$ so using $k = 5.1 \times 10^6 s^{-1}$ at T = 303 K: 5.1 × 10⁶ s⁻¹ = $A \times e^{-(54000/(8.314 \times 303))}$ so $A = 8.6 \times 10^{15} s^{-1}$.