Click on the links for resources on each topic.

2008-N-2:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} \mathrm{Ka}_{\mathrm{a}}$
- Solubility Equilibrium

2008-N-3:

- Weak Acids and Bases
- Calculations Involving pKa
- Solubility Equilibrium

2008-N-4:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2008-N-5:

- Metal Complexes
- Coordination Chemistry

2008-N-6:

- Kinetics

2008-N-7:

- Kinetics
- Weak Acids and Bases
- Calculations Involving pKa

2008-N-8:

- Crystal Structures

2008-N-9:

- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Aromatic Compounds
- Carboxylic Acids and Derivatives

2008-N-10:

- Stereochemistry

2008-N-11:

- Aldehydes and Ketones
- Organic Mechanisms and Molecular Orbitals

2008-N-12:

- Alcohols
- Alkenes
- Stereochemistry

2008-N-14:

- Alcohols
- Carboxylic Acids and Derivatives

2008-N-15:

- Aromatic Compounds
- The ocean contains a variety of forms of $\mathrm{CO}_{3}{ }^{2-}$ and CO_{2} with a variety of acid-base and solubility equilibria determining their concentrations. There is concern that increasing levels of CO_{2} will lead to increased dissolution of CaCO_{3} and critically affect the survival of life forms that rely on a carbonaceous skeleton.
Calculate the concentrations of Ca^{2+} and $\mathrm{CO}_{3}{ }^{2-}$ in a saturated solution of CaCO_{3}. (The $K_{\text {sp }}$ of CaCO_{3} is 3.3×10^{-9}.)

The dissolution of CaCO_{3} follows the reaction,

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

If the molar solubility of CaCO_{3} is S then $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]=\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right]=S$.
The solubility product is given by:

$$
K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]\left[\mathrm{CO}_{3}^{2-}(\mathrm{aq})\right]=(S) \cdot(S)=S^{2}
$$

As $K_{\text {sp }}=3.3 \times 10^{-9}$,

$$
S^{2}=3.3 \times 10^{-9} \text { or } S=5.7 \times 10^{-5} \mathrm{M}
$$

$$
\begin{array}{|l|l|}
\hline\left[\mathrm{Ca}^{2+}\right]=5.7 \times 10^{-5} \mathbf{M} & {\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathbf{5 . 7} \times \mathbf{1 0}^{-5} \mathbf{M}} \\
\hline
\end{array}
$$

Calculate the pH of such a solution. (The $\mathrm{p} K_{\mathrm{a}}$ of HCO_{3}^{-}is 10.33).
$\mathrm{CO}_{3}{ }^{2-}$ is a weak base and will react with water to produce $\mathrm{HCO}_{3}{ }^{-}$:

	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	OH^{-}	$\mathrm{HCO}_{3}{ }^{-}$
initial	5.7×10^{-5}	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$5.7 \times 10^{-5}-x$	large		x	x

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{CO}_{3}^{2-}(\mathrm{aq})\right]}=\frac{x^{2}}{5.7 \times 10^{-5}-x}
$$

As $\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00, \mathrm{p} K_{\mathrm{b}}=14.00-10.33=3.67 . \mathrm{As} \mathrm{p} K_{\mathrm{b}}=-\log K_{\mathrm{b}}$, so

$$
K_{\mathrm{b}}=10^{-3.67}
$$

As the concentration of the base is so small, the 'small x ' approximation cannot be used and it is necessary to solve the quadratic equation. From above,

$$
x^{2}+10^{-3.67} x-\left(5.7 \times 10^{-5} \times 10^{-3.67}\right)=0
$$

Solving this using the quadratic formula gives $x=4.67 \times 10^{-5}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$. Hence,

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=4.33
$$

Finally, since $\mathbf{p H}+\mathbf{p O H}=14.00$,

$$
\mathrm{pH}=14.00-4.33=9.67
$$

$$
\mathrm{pH}=\mathbf{9 . 6 7}
$$

The pH of surface ocean water is currently 8.10 (having fallen from a pre-industrial era level of 8.16), the concentration of HCO_{3}^{-}is $2.5 \times 10^{-3} \mathrm{M}$, and it is saturated with CaCO_{3}. Calculate the concentration of Ca^{2+} in these conditions.

From 2008-N-2,

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right]}=10^{-3.67}
$$

If $\mathbf{p H}=8.10$ then $\mathbf{p O H}=14.00-8.10=5.90$ and so $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-5.90} \mathrm{M}$.
If $\left[\mathrm{HCO}_{3}\right]=2.5 \times 10^{-3} \mathrm{M}$, then

$$
\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\left[\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})\right]}{K_{b}}=\frac{\left(10^{-5.90}\right)\left(2.5 \times 10^{-3}\right)}{\left(10^{-3.67}\right)}=1.47 \times 10^{-5}
$$

From 2008-N-2, $K_{\text {sp }}=\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right]=3.3 \times 10^{-9}$. Hence,

$$
\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]=K_{\text {sp }} /\left[\mathrm{CO}_{3}^{2-}(\mathrm{aq})\right]=3.3 \times 10^{-9} /\left(1.47 \times 10^{-5}\right)=2.2 \times 10^{-4} \mathrm{M}
$$

$$
\left[\mathrm{Ca}^{2+}\right]=\mathbf{2 . 2} \times \mathbf{1 0}^{-4} \mathbf{M}
$$

The pH is expected to drop to about 7.8 by the end of the century as CO_{2} levels increase further. What effect will this have on the solubility of CaCO_{3} in sea water? Use chemical equations to assist with explaining your answer.

The solubility of CaCO_{3} will increase.
At a lower $\mathrm{pH},\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ will be lower. The equilibrium below will be shifted to the right:

$$
\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

With lower $\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right],\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ will increase as $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]=K_{\text {sp }} /\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right]$. The solubility will be increased.

- F_{2} and Cl_{2} are gases at room temperature, Br_{2} is a liquid, and I_{2} is a solid. Explain why the melting points and boiling points of the halogens increase going down the group.

Going down the group, the atoms get bigger - they have more electrons and these occupy orbitals of higher \boldsymbol{n} values which are larger and more diffuse.

Hence, they have bigger and more polarisable electron clouds. Dispersion forces depend on the polarizability of the electron cloud and therefore increase going down the group. The melting and boiling points increase accordingly.

Shown above is the phase diagram for iodine. What are the melting and boiling points of iodine at atmospheric pressure?

Atmospheric pressure corresponds to 101.3 kPa . The dotted line corresponding to this pressure crosses the boundary between solid and liquid at $113.6^{\circ} \mathrm{C}$. This is the normal melting point. The dotted line corresponding to this pressure crosses the boundary between liquid and gas at $184.4^{\circ} \mathrm{C}$. This is the normal boiling point.

In what way would you need to change the conditions to make iodine, initially at room temperature and pressure, sublime?

Under these conditions, iodine is a solid (shown by the dot on the phase diagram). To turn it from solid to gas (sublime) requires lowering the pressure (shown by the arrow on the diagram) until it is below that on the solid - gas boundary.

Describe what will happen if pressure is applied to a sample of solid iodine.

At room temperature and pressure, iodine is a solid (shown by the dot on the phase diagram). Increasing the pressure will not do anything to the phase.

- Alfred Werner, one of the founders of the field of coordination chemistry, prepared a series of platinum complexes that contained ammonia and chloride ions. One of these had the empirical formula $\mathrm{PtCl}_{4} .4 \mathrm{NH}_{3}$ and when reacted with silver nitrate released two chloride ions per formula unit. Write the structural formula of this compound and write the name of this compound.
Ag^{+}will react with uncoordinated Cl^{-}to form $\mathrm{AgCl}(\mathrm{s})$. As it reacts with two Cl^{-} ions per formula unit, there must be $2 \mathrm{Cl}^{-}$counter ions.

The remaining $2 \mathrm{Cl}^{-}$ions and the $4 \mathrm{NH}_{3}$ molecules are coordinated to the metal.
The oxidation number of the metal is +IV. The complex ion is thus $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\mathbf{2}}$.
The coordination compound is $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$.
The name of this compound is tetraamminedichloridoplatinum(IV) chloride

Draw the possible structures of the metal complex.

With $\mathbf{2 C l}^{-}$and $4 \mathrm{NH}_{3}$ ligands, two isomers are possible:

cis-

trans-

What types of isomers can be formed by a compound with this empirical formula?
Geometric (cis and trans) isomerism is possible (as above).
What is the d electron configuration of the Pt in this complex?
Platinum is in group 10 so $\operatorname{Pt}(\mathrm{IV})$ has $(10-4)=6 d$-electrons: $5 d^{6}$.

- 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}
$$

The following rate data were collected at $55^{\circ} \mathrm{C}$.

Experiment	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}(\mathrm{M})$	$[\mathrm{OH}]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

Determine the rate law for the reaction.

Between experiments (1) and (2), $\left[\mathrm{OH}^{-}\right]_{0}$ is constant. $\left.\left[\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}$ is increased by a factor of 4 and this leads to the rate increasing by a factor of 4 : rate α $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.

Between experiments (2) and (3), $\left.\left[\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}$ is constant. $\left[\mathrm{OH}^{-}\right]_{0}$ is increased by a factor of 3 and this leads to no change in the rate. The rate is independent of $\left[\mathrm{OH}^{-}\right]_{0}$.

Overall, rate $=\boldsymbol{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.
Calculate the value of the rate constant at $55^{\circ} \mathrm{C}$.

From the rate law, $\boldsymbol{k}=$ rate $/\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.
For experiment 1, rate $=5 \times 10^{-4} \mathrm{M} \mathrm{s}^{-1}$ and $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]=0.050 \mathrm{M}$ and so

$$
k=\left(5 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}\right) /(0.050 \mathrm{M})=1.0 \times 10^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Answer: } \boldsymbol{k}=\mathbf{1 . 0} \times \mathbf{1 0}^{-2} \mathbf{s}^{\mathbf{- 1}}
$$

Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

The rate is independent of $\left[\mathrm{OH}^{-}\right]$suggesting that it is involved in a step after the rate determining step.

The rate is directly proportional to $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ suggesting that a rate determining step which is unimolecular in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$.

A possible mechanism is:
(1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br} \rightarrow\left(\mathrm{CH}_{3}\right)_{3}^{+}+\mathrm{Br}^{-}$slow
(2) $\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OH}$ fast

The reaction is exothermic. Draw the potential energy vs reaction coordinate diagram for this mechanism, labelling all species that can be isolated.

From 2008-N-6, the mechanism involves two steps: a slow first step and a fast second step. As the first step is rate determining, it has a higher activation energy. As the reaction is exothermic overall, the products have lower enthalpy than the reactants.

Reaction coordinate

- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?

Using $\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}(\mathbf{a q})\right]$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {initial }}=10^{-1.22}=0.060 \mathrm{M}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {final }}=10^{-2.00}=\mathbf{0 . 0 1 0} \mathrm{M}}
\end{aligned}
$$

Using $\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}(\mathbf{a q})\right]$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {initial }}=10^{-1.22}=0.060 \mathrm{M}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {final }}=10^{-2.00}=\mathbf{0 . 0 1 0} \mathrm{M}}
\end{aligned}
$$

The change of $(0.060-0.010 \mathrm{M})=0.050 \mathrm{M}$ occurs due to the reaction with $\mathrm{IO}_{3}{ }^{-}$ (aq) to produce $\mathrm{HIO}_{3}(\mathrm{aq})$. If $\left[\mathrm{IO}_{3}^{-}(\mathrm{aq})\right]=x$, the reaction table is:

	$\mathbf{H}^{+}(\mathrm{aq})+$	$\mathbf{I O}_{\mathbf{3}}{ }^{-}(\mathrm{aq})$	\rightleftharpoons	$\mathbf{H I O}_{\mathbf{3}}(\mathrm{aq})$
initial	$\mathbf{0 . 0 6 0}$	\boldsymbol{x}		$\boldsymbol{0}$
change	$\mathbf{- 0 . 0 5 0}$	$\mathbf{- 0 . 0 5 0}$		$+\mathbf{0 . 0 5 0}$
final	$\mathbf{0 . 0 1 0}$	$\boldsymbol{x}-\mathbf{0 . 0 5 0}$		$\mathbf{0 . 0 5 0}$

$$
\text { As } p K_{\mathrm{a}}=0.79=-\log _{10} K_{\mathrm{a}}:
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{IO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{HIO}_{3}(\mathrm{aq})\right]}=\frac{(0.010) \times(x-0.050)}{0.050}=10^{-0.79}
$$

Thus, $x=0.86 \mathrm{M}=\left[\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})\right]_{\text {initial }}$. This concentration corresponds to a $\mathbf{3 0 0 . 0} \mathbf{~ m L}$ solution so the number of moles that have been added is:

$$
\begin{aligned}
\text { number of moles } & =\text { concentration } \times \text { volume } \\
& =(0.86 \mathrm{M}) \times(0.3000 \mathrm{~L})=0.26 \mathrm{~mol}
\end{aligned}
$$

- The diagram below shows the structure of an oxide of rhenium. The unit cell is cubic with rhenium at each of the corners and oxygen in the centre of each of the edges.

$$
\bullet=\operatorname{Re} \quad 0=0
$$

What is the chemical formula of this oxide?

There are 8 Re atoms on the corners, each contributing $1 / 8$ to the unit cell: total number of Re atoms $=8 \times 1 / 8=1$.

There are 120 atoms on the edges, each contributing $1 / 4$ to the unit cell: total number of O atoms $=12 \times 1 / 4=3$.

The formula is thus ReO_{3}.

$$
\text { Answer: } \mathbf{R e O}_{\mathbf{3}}
$$

What are the coordination numbers of rhenium and oxygen in this compound?

Re: 6 (octahedral)	O: 2 (linear)

There is a large hole at the centre of the cell that in some compounds is occupied by a cation. What is the coordination number of a cation occupying this site?

12 coordinate.

Given that the density of this oxide is $7.1 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the length of the cell edge. (The structure is cubic.)

The unit cell contains one formula unit of ReO_{3}.
The formula mass of ReO_{3} is $(\mathbf{1 8 6 . 2}(\mathrm{Re})+3 \times 16.00(\mathrm{O}))=234.2 \mathrm{~g} \mathrm{~mol}^{-1}$.
This is the mass of $\mathbf{1} \mathbf{~ m o l}$. The mass of $\mathbf{1}$ formula unit is therefore:

$$
\text { mass }==234.2 \mathrm{~g} \mathrm{~mol}^{-1} / 6.022 \times 10^{23} \mathrm{~mol}^{-1}=3.889 \times 10^{-22} \mathrm{~g}
$$

As density = mass / volume,

$$
\text { volume }=\text { mass } / \text { density }=\left(3.889 \times 10^{-32} \mathrm{~g}\right) /\left(7.1 \mathrm{~g} \mathrm{~cm}^{-3}\right)=5.48 \times 10^{-23} \mathrm{~cm}^{3}
$$

As the cell is cubic, if the side length is a, the volume is a^{3} and,

$$
a=\left(5.48 \times 10^{-23} \mathrm{~cm}^{3}\right)^{1 / 3}=3.8 \times 10^{-8} \mathrm{~cm}=3.8 \times 10^{-10} \mathrm{~m} \text { or } 380 \mathrm{pm} .
$$

- Complete the following table by drawing the structures of the intermediate and final organic product(s) as required. The intermediate product is formed when the starting material is treated with Reagent 1. The final product is formed when the intermediate product is treated with Reagent 2.
Starting material
- Consider the amino acid L-cysteine shown below.

Draw the zwitterionic form of L-cysteine.

Draw the dipeptide L-cysteinyl-L-cysteine.

Assign the absolute configuration (R or S) of L-cysteine. Show your working.

Absolute configuration is (\boldsymbol{R})-

Priorities: $-\mathrm{NH}_{2}>-\mathrm{CH}_{2} \mathrm{SH}>-\mathrm{COOH}>-\mathrm{H}$
With H at back, the order of $-\mathrm{NH}_{2} \rightarrow-\mathrm{CH}_{2} \mathrm{SH} \rightarrow-\mathrm{COOH}$ goes clockwise

Draw the enantiomer of L-cysteine.

- Apply your understanding of curly arrows to propose a mechanism for the following reaction.

- Propose a structure for the product of the following reaction. Outline a mechanism for its formation, showing all curly arrows and intermediates.

- Consider the isomer of limonene shown below.

Show the major organic products formed when limonene is treated with excess H_{2} in the presence of a Pd / C catalyst. Pay particular attention to any relevant stereochemistry. Identify which would be the major product and explain why it forms preferentially.

A

B

Isomer A would be the major product.
The reaction takes place on the surface of the catalyst. The isopropyl group provides steric hindrance to the side of the ring that is cis to this group.
Both H's therefore are delivered to the other side of the molecule.

Use Markovnikov's rule to predict the two major products of the reaction between limonene and excess HBr . Draw these isomers and identify the isomeric relationship between them. Specify the optical activity (active or inactive) of each isomer.

They are diastereoisomers. Both isomers are optically inactive.

At what m / z would the molecular ion of one of these isomers appear in its mass spectrum? Explain your answer.

Br exists as two isotopes ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$, which occur in approximately equal amounts.
There would be 3 molecular ion peaks at $m / z 296,298$ and 300 due to the ions containing $2{ }^{79} \mathrm{Br}$ atoms, $1{ }^{79} \mathrm{Br}$ and $1{ }^{81} \mathrm{Br}$ atom and $2{ }^{81} \mathrm{Br}$ atoms, respectively.

- For each of the following pairs of compounds, identify which is the stronger acid and give reasons for your choice.

Phenol is more acidic as the phenoxide ion is resonance stabilised:

Chloroacetic acid is more acidic. The $\mathbf{C l}$ atom is electronegative and pulls electrons from the carboxylic acid, thus weakening the $\mathbf{O}-\mathrm{H}$ bond.

The para isomer is more acidic as the charge on the phenoxide ion can be delocalised into the nitro group. This is not possible with the meta isomer.

- The bromination of phenol proceeds as follows.

Show the Wheland intermediate for one of these steps and explain why bromination occurs at positions 2, 4 and 6 , but not at positions 3 and 5 .

Bromination at the $\mathbf{4}$ (or 2 or $\mathbf{6}$) position gives a Wheland intermediate that has four resonance contributors as the lone pair on the oxygen can be donated into the ring to help stabilise the charge.

Bromination at the 3 or 5 position gives a Wheland intermediate that has only three resonance contributors - the lone pair on the oxygen cannot participate in the resonance stabilisation.

