Click on the links for resources on each topic.

2009-N-2:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} \mathrm{Ka}_{\mathrm{a}}$
- Solubility Equilibrium

2009-N-3:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-4:

- Metal Complexes
- Coordination Chemistry

2009-N-5:

- Kinetics

2009-N-6:

- Crystal Structures

2009-N-7:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-8:

- Alkenes
- Alcohols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives
- Synthetic Strategies

2009-N-9:

- Carboxylic Acids and Derivatives

2009-N-10:

- Carboxylic Acids and Derivatives
- Aromatic Compounds

2009-N-11:

- Structural Determination

2009-N-12:

- Stereochemistry

2009-N-13:

- Alcohols
- Organic Mechanisms and Molecular Orbitals
- All forms of life depend on iron and the concentration of iron in the oceans and elsewhere is one of the primary factors limiting the growth rates of the most basic life forms. One reason for the low availability of iron(III) is the insolubility of the hydroxide, $\mathrm{Fe}(\mathrm{OH})_{3}$, which has a $K_{\text {sp }}$ of only 2×10^{-39}.
Calculate the maximum possible concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ in the pre-industrial era ocean which had a pH of about 8.2.

When $\mathbf{p H}=8.2, \mathrm{pOH}=14.0-8.2=5.8$. As $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$:
$\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-5.8} \mathrm{M}$
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ dissolves according to the chemical equation:

$$
\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

The solubility product is therefore given by:

$$
K_{\mathrm{sp}}=\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{3}
$$

As $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-5.8} \mathrm{M}$:

$$
\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]=K_{\text {sp }} /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{3}=2 \times 10^{-39} /\left(10^{-5.8}\right)^{3} \mathrm{M}=5 \times 10^{-22} \mathrm{M}
$$

$$
\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]=\mathbf{5} \times \mathbf{1 0}^{-22} \mathbf{M}
$$

How many $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions are present in a litre of seawater at this pH ?
From above, $\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]=5 \times 10^{-22} \mathrm{M}=5 \times 10^{-22} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Hence, a litre of seawater contains $5 \times 10^{-22} \mathbf{~ m o l}$.
The number of ions of Fe^{3+} is therefore:

$$
\text { number of ions }=\left(5 \times 10^{-22} \mathrm{~mol}\right) \times\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=300
$$

Answer: 300
The pH of the ocean is predicted to drop to 7.8 by the end of this century as the concentration of CO_{2} in the atmosphere increases. What percentage change in the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ will result from this fall in pH ?

When $\mathbf{p H}=7.8, \mathrm{pOH}=14.0-7.8=6.2$ and $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-6.2} \mathrm{M}$. Hence:

$$
\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]=K_{\text {sp }} /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{3}=2 \times 10^{-39} /\left(10^{-6.2}\right)^{3} \mathrm{M}=8 \times 10^{-21} \mathrm{M}
$$

The percentage increase is therefore:

$$
\text { percentage change }=\frac{\left(8 \times 10^{-21}-5 \times 10^{-21}\right)}{5 \times 10^{-21}} \times 100 \%=1500 \%
$$

- Shown below is the energy profile for the separation of Na^{+}from $\mathrm{H}_{2} \mathrm{O}$. Draw energy

There is an activation energy (barrier) for the breaking of a covalent bond. For an ionic bond and an ion-dipole interaction, the energy just increases with separation. Due to the charges, the ion-ion interaction is harder to break than the ion-dipole interaction.

Name the inter- or intra-molecular forces involved in each of these three interactions.

$\mathrm{Na}^{+} \mathrm{OH}_{2}$	ion - dipole
$\mathrm{Mg}^{2+} \mathrm{Cl}^{-}$	ion - ion (ionic bond)
C C	covalent bond

Explain why bonds such as $\mathrm{C}-\mathrm{C}$ are generally considered to be stronger than interactions such as that between Mg^{2+} and Cl^{-}.

The covalent bond has a large energy barrier (activation energy) that must be overcome to break the bond. Ionic bonds do not have this barrier, but have a larger overall ΔH.

- When cobalt(II) chloride is reacted with ethane-1,2-diamine (en) and the product is oxidised in the air, a purple compound with the empirical formula $\mathrm{CoCl}_{3} \cdot 2 \mathrm{en}$ is obtained. When reacted with silver nitrate only one chloride ion is released. The compound can be resolved into its enantiomeric forms.

Give the structural formula of the compound.

$\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$

1 chloride ion must be a counter ion as only 1 is released when silver nitrate is added. As en is neutral, it must be coordinate to the metal ion.

Give the name of the compound.
cis-dichloridobis(ethane-1,2-diamine)cobalt(III) chloride
Although the structural formula above gives rise to cis and trans isomers, only the cis form is optically active.

Draw the structure of the metal complex component of the compound.

What is the d electron configuration of the Co in this complex?
$\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}=\mathrm{Co}^{3+}+2 \mathrm{en}+3 \mathrm{Cl}^{-}$. As Co is in group 9, it has 9 valence electrons. Co^{3+} has $(9-3)=6$ electrons: $3 d^{6}$

What types of isomers can be formed by a compound with this empirical formula?
Geometrical (cis and trans) isomers are possible.
The cis isomer can form optical isomers.
Which of the possible isomers has formed? Explain the logic you have used in determining this.

As only the cis isomer can form enantiomers, it must have been formed.
The trans isomer is superimposable (i.e. identical) to its mirror image.

- Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{0}(\mathrm{M})$	Initial rate, $-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt},\left(\mathrm{M} \mathrm{s}^{-1}\right)$
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

Determine the rate law for the reaction.
Between experiments 1 and 2, [NO] is held constant and $\left[\mathrm{O}_{2}\right]$ doubles. This leads to a doubling of the rate: the reaction is $1^{\text {st }}$ order with respect to O_{2}.
Between experiments 1 and 3, $\left[\mathrm{O}_{2}\right]$ is held constant and [NO] doubles. This leads to the rate increasing by a factor of 4 : the rate is $2^{\text {nd }}$ order with respect to NO.
The rate law is therefore:

$$
-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
In experiment $1,[\mathrm{NO}]=1.3 \times 10^{-2} \mathrm{M},\left[\mathrm{O}_{2}\right]=1.1 \times 10^{-2} \mathrm{M}$ and rate $=1.6 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$. Substituting these values into the rate law gives:

$$
\left(1.6 \times 10^{-3} \mathrm{M} \mathrm{~s}^{-1}\right)=k \times\left(1.3 \times 10^{-2} M\right)^{2} \times\left(1.1 \times 10^{-2} \mathrm{M}\right)
$$

Hence:

$$
k=860 \mathrm{M}^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Answer: } \mathbf{8 6 0} \mathrm{M}^{-2} \mathbf{s}^{-1}
$$

Calculate the rate of appearance of NO_{2} when $[\mathrm{NO}]=\left[\mathrm{O}_{2}\right]=6.5 \times 10^{-3} \mathrm{M}$.
Substituting the values into the rate law gives:

$$
\begin{aligned}
-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt} & =k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\
& =\left(860 \mathrm{M}^{-2} \mathrm{~s}^{-1}\right) \times\left(6.5 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(6.5 \times 10^{-3} \mathrm{M}\right)=2.35 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

From the chemical equation, the rate of appearance of NO_{2} is twice the rate of loss of O_{2} :

$$
\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}=2 \times-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}=\left(2 \times 2.35 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}\right)=4.7 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}
$$

Answer: $\mathbf{4 . 7 \times 1 0 ^ { - 4 } \mathbf { M ~ s } ^ { - 1 } , ~}$
ANSWER CONTINUES ON THE NEXT PAGE

Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.
A possible mechanism is:

Step 1:	$\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$	fast equilibrium
Step 2:	$\mathbf{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	slow (i.e. rate determining)

If the first step is at equilibrium with equilibrium constant K_{1} :

$$
\boldsymbol{K}_{1}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}} \Rightarrow \quad\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]=\boldsymbol{K}_{1}[\mathrm{NO}]^{2}
$$

The rate of step 2 is therefore

$$
\begin{aligned}
\text { rate } & =k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right] \\
& =k_{2} K_{1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{aligned}
$$

This is consistent with the experiment rate law with $\boldsymbol{k}=\boldsymbol{k}_{1} K$.

- The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. The unit cell dimension (edge length, a) for this alloy is 0.36 nm .

$O=A u$
$O=\mathrm{Cu}$

What is the chemical formula of the alloy?
There are 8 Au atoms on the corners. Each of these contribute $1 / 8$ to the unit cell: number of Au atoms $=8 \times 1 / 8=1$
There are 6 Cu atoms on the face. Each of these contribute $1 / 2$ to the unit cell: number of Cu atoms $=6 \times 1 / 2=3$

The ratio of Cu to Au atoms is therefore $3: 1$ and the formula is $\mathrm{Cu}_{3} \mathrm{Au}$.
Answer: $\mathbf{C u} \mathbf{u}_{3} \mathbf{A u}$
Given that pure gold is 24 carat and gold alloyed with 25% by weight of another metal is termed 18 carat gold, what carat gold is this alloy?

The molar mass of $\mathrm{Cu}_{3} \mathbf{A u}$ is:

$$
\text { molar mass }=(3 \times 63.55(\mathrm{Cu})+1 \times 196.97(\mathrm{Au})) \mathrm{g} \mathrm{~mol}^{-1}=387.62 \mathrm{~g} \mathrm{~mol}^{-1}
$$

As $1 \mathbf{m o l}$ of $\mathrm{Cu}_{3} \mathrm{Au}$ contains $1 \mathbf{m o l}$ of Au , the percentage by weight of gold in $\mathrm{Cu}_{3} \mathrm{Au}$ is:

$$
\text { percentage by weight }=\frac{197.67}{387.62} \times 100 \%=50 \%
$$

As a 100% alloy is $\mathbf{2 4}$ carat and a 75% alloy is $\mathbf{1 8}$ carat, a 50% alloy is $\mathbf{1 2}$ carat.

Answer: 12 carat
What is the volume of the unit cell?
As the unit cell is cubic:

$$
\text { volume }=(\text { side length })^{3}=a^{3}=\left(0.36 \times 10^{-9} \mathrm{~m}\right)^{3}=4.7 \times 10^{-29} \mathrm{~m}^{3}
$$

Answer: $\mathbf{4 . 7 \times 1 0 ^ { - 2 9 } \mathbf { m } ^ { 3 }}$
ANSWER CONTINUES ON THE NEXT PAGE

What is the density of the alloy?
From above, the unit cell contains 1 Au atom and 3 Cu atoms:
mass of gold $=196.97 \mathrm{~g} \mathrm{~mol}^{-1} / 6.022 \times 10^{23} \mathrm{~mol}^{-1}=3.271 \times 10^{-22} \mathrm{~g}$
mass of copper $=3 \times 63.55 \mathrm{~g} \mathrm{~mol}^{-1} / 6.022 \times 10^{23} \mathrm{~mol}^{-1}=3.166 \times 10^{-22} \mathrm{~g}$
mass of unit cell $=\left(3.271 \times 10^{-22}+3.166 \times 10^{-22}\right) \mathrm{g}=6.437 \times 10^{-22} \mathrm{~g}$
The density is therefore:
density $=$ mass $/$ volume

$$
=6.437 \times 10^{-22} \mathrm{~g} / 4.7 \times 10^{-29} \mathrm{~m}^{3}=1.4 \times 10^{7} \mathrm{~g} \mathrm{~m}^{-3}
$$

As $1 \mathrm{~m}=100 \mathrm{~cm}, 1 \mathrm{~m}^{3}=(100)^{3} \mathrm{~cm}^{3}=10^{5} \mathrm{~cm}^{3}$: density $=14 \mathrm{~g} \mathrm{~cm}^{-3}$

Answer: $\mathbf{1 4 ~ g ~ c m}{ }^{-3}$

Shown below is the phase diagram for the $\mathrm{Cu} / \mathrm{Au}$ system. Describe what would be seen as a sample of the alloy is heated from 900 to $1100^{\circ} \mathrm{C}$.

Marks

The solid would warm to $950{ }^{\circ} \mathrm{C}$ where melting would begin.
From $950-960{ }^{\circ} \mathrm{C}$, the solid and liquid phases would co-exist. This should be compared to the behaviour of a pure substance where there is no increase in temperature whilst the solid melts.
Above $960{ }^{\circ} \mathrm{C}$, only liquid is present.

- Suggest reagents to accomplish the following transformations. More than one step is required in all cases.

- Propose a structure for the product of the following reaction. Outline a mechanism for its formation. Show all curly arrows and any intermediates.

- For each of the following pairs of compounds, identify which is the stronger acid and give reasons for your choice.

(P)
and

(Q)
(Q) There is greater resonance stabilisation of the conjugate base (more canonical forms):

(R)
and
(R) There is greater resonance stabilisation of the conjugate base because it is aromatic.

ANSWER CONTINUES ON THE NEXT PAGE
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(T)
(U)
(T) There is greater resonance stabilisation of the conjugate base due to the inductive electron withdrawal of the very electronegative F atoms.

- The ${ }^{1} \mathrm{H}$ NMR spectra of these four compounds are shown below. Match each compound to its spectrum, and assign each spectrum as fully as you can.

A

B

C

D

X is a CH_{3} group (integral $=3$) with no H atoms on neighbouring atoms: it is a singlet.
Y is a $\mathbf{C H}_{\mathbf{2}}$ group (integral $=\mathbf{2}$) with $\mathbf{3 H}$ on neignbouring atom; it is a quartet.
\mathbf{Z} is a $\mathbf{C H}_{3}$ group (integral $=3$) with 2 H on neighbouring atom: it is a triplet.

ANSWER CONTIUNES ON THE NEXT PAGE

Spectrum of: $\underline{\mathbf{A}} \mathrm{B}$ C D (Circle the correct answer.)
Assignment:

X is a CH_{3} group (integral $=3$) with no H atoms on neighbouring atoms: it is a singlet.
Y is a $\mathbf{C H}_{2}$ group (integral $=\mathbf{2}$) with $\mathbf{3 H}$ on neignbouring atom; it is a quartet. \mathbf{Z} is a $\mathbf{C H}_{3}$ group (integral $=3$) with 2 H on neighbouring atom: it is a triplet.

ANSWER CONTINUES ON THE NEXT PAGE

ANSWER CONTINUES ON THE NEXT PAGE

Spectrum of: A B $\quad \mathbf{C} \quad$ (Circle the correct answer.)
Assignment:

\mathbf{X} is a $\mathbf{C H}_{3}$ group (integral $=3$) with $2 \mathbf{H}$ atoms on neighbouring atoms: it is a tripley.

Y is a $\mathbf{C H}_{2}$ group (integral $=\mathbf{2}$) with $\mathbf{3 H}$ on neignbouring atom; it is a quartet.
\mathbf{Z} is a CH_{3} group (integral $=3$) with no \mathbf{H} atoms on neighbouring atoms: it is a singlet.

- The following questions pertain to the terpene natural product menthol (\mathbf{J}), whose structure is shown. Carbons 1 and 2 are numbered to help you construct your answer.

Ignoring the stereochemistry, what is the systematic name for menthol?

2-isopropyl-5-methylcyclohexanol

2-(1-methylethyl)-5-methylcyclohexanol is also acceptable.
Assign the absolute configuration at C 1 and at C 2 . Explain your reasoning.

C 1 is (R)
Priorities: $\mathrm{OH}>\mathrm{C} 2 \mathrm{C}(\mathrm{C}, \mathrm{C}, \mathrm{H})>$
C6 C(C,H,H) > H
With H at back, the order of $-\mathrm{OH} \rightarrow$ $-\mathrm{C} 2 \rightarrow-\mathrm{C} 6$ goes clockwise

C 2 is (S)
Priorities: $\mathrm{C} 1 \mathrm{C}(\mathrm{O}, \mathrm{C}, \mathrm{H})>$ isopropyl
$\mathrm{C}(\mathrm{C}, \mathrm{C}, \mathrm{H})>\mathrm{C} 3 \mathrm{C}(\mathrm{C}, \mathrm{H}, \mathrm{H})>\mathrm{H}$
Remember the H is pointing in front of the paper.
With H at back, the order of $-\mathrm{C} 1 \rightarrow-$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow-\mathrm{C} 3$ goes anticlockwise

When menthol (\mathbf{J}) is heated with concentrated sulfuric acid, two isomeric products \mathbf{K} and \mathbf{L} are formed. When \mathbf{K} and \mathbf{L} are treated with excess H_{2} in the presence of a Pd / C catalyst, two products \mathbf{M} and \mathbf{N} are observed: \mathbf{K} gives only \mathbf{M}, while \mathbf{L} gives a mixture of \mathbf{M} and \mathbf{N}. Propose structures for $\mathbf{K}, \mathbf{L}, \mathbf{M}$ and \mathbf{N}.

K

L

M

ANSWER CONTINUES ON THE NEXT PAGE

What is the isomeric relationship between \mathbf{K} and \mathbf{L} ?	constitutional isomers
What is the isomeric relationship between \mathbf{M} and \mathbf{N} ?	diastereoisomers
Which (if any) of the compounds $\mathbf{J}, \mathbf{K}, \mathbf{L}, \mathbf{M}$ and \mathbf{N}	
are optically active?	

- Add curly arrows to complete the mechanism of the unusual E2 reaction shown below, the Grob Fragmentation. (Note that $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ is potassium tert-butoxide, a strong base.)

Explain briefly why the relative stereochemistry of the OH and Br groups in the starting material is important in this reaction.

The groups must have an antiperiplanar alignment in order that the orbitals overlap correctly to form the new bonds.

