- Draw the constitutional formula(s) of the major organic product(s) formed in each of the following reactions.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HBr})</td>
<td>(\text{CH}_3 \text{CH}_2 \text{CH} = \text{CH}_2)</td>
</tr>
<tr>
<td>(\text{CH}_3 \text{CH}_2 \text{CH}_3)</td>
<td>(\text{CH}_3 \text{CH}_2 \text{OH}) (\text{conc. H}_2\text{SO}_4)</td>
</tr>
<tr>
<td>(\text{C}8\text{H}{11}\text{OH})</td>
<td>(\text{C}8\text{H}{11}\text{OH}) (\text{Cr}_2\text{O}_7^{2-} / \text{H}^+ / \text{H}_2\text{O})</td>
</tr>
</tbody>
</table>
Compound Z can readily be identified by 1H NMR spectroscopy.

![Diagram of compound Z]

How many signals would you expect to see in the 1H NMR spectrum of compound Z?

Write the letters a, b, c, etc on the diagram of compound Z to identify each unique hydrogen environment giving rise to a signal in the 1H NMR spectrum.

Sketch the 1H NMR spectrum for compound Z. Label each signal in the spectrum with a, b, c, etc to correspond with your assignments on the diagram of Z above. Make sure you show the relative number of hydrogens and the splitting pattern (number of fine lines) you would expect to see for each signal.
• Draw the constitutional structure of the major organic product formed in the following reactions. Indicate the correct isomer where appropriate.
• Draw the constitutional formula of the major organic product formed in each of the following reactions.

\[
\text{Cr}_2\text{O}_7^{2-} / \text{H}^+ \rightarrow
\]

\[
\text{conc. HBr}
\]

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.