CHEM1902/4 Worksheet 11 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: The Unit Cell

1. (a) Number of Cl atoms = 8 × ⅛ (atoms on corners) + 6 × ½ (atoms on faces) = 4.
 (b) Number of Na atoms = 12 × ¼ (atoms on edges) + 1 (atom at centre) = 4.
 (c) Cation : anion = 4 : 4 or 1 : 1. This is consistent with the formula NaCl.

2. (a) Number of Ti atoms = 1 (atom at centre).
 (b) Number of Ca atoms = 8 × ⅛ (atoms on corners) = 1
 (c) Number of O atoms = 6 × ½ (atoms on edges) = 3.
 (d) The formula is Ca\textsubscript{1}Ti\textsubscript{1}O\textsubscript{3} or CaTiO\textsubscript{3}.
 (e) Calcium always forms Ca2+ ions. Oxygen always forms O2- ions. To make the charges balance, titanium must be present as Ti4+: (Ca2+)(Ti4+)(O2-)\textsubscript{3}.

Model 2: The solubility product

1. See opposite. The system is only at equilibrium at the concentrations on the line.

2. (a) AgCl(s) \rightleftharpoons Ag+(aq) + Cl-(aq);
 $K_{sp} = [\text{Ag}^+][\text{Cl}^-]$
 (b) Ag\textsubscript{2}SO\textsubscript{4}(s) \rightleftharpoons 2Ag+(aq) + SO\textsubscript{4}2-(aq);
 $K_{sp} = [\text{Ag}^+]^2[\text{SO}_4^{2-}]$
 (c) PbCl\textsubscript{2}(s) \rightleftharpoons Pb2+(aq) + 2Cl-(aq);
 $K_{sp} = [\text{Pb}^{2+}][\text{Cl}^-]^2$

3. (a) [Pb2+(aq)] = x and [Cl-(aq)] = 2x.
 (b) $K_{sp} = [\text{Pb}^{2+}][\text{Cl}^-]^2 = (x)(2x)^2 = 4x^3$
 If $4x^3 = 1.6 \times 10^{-5}$, then $x = 1.59 \times 10^{-2}$.
 [Pb2+(aq)] = 1.59×10^{-2} M and [Cl-(aq)] = $2x = 3.17 \times 10^{-2}$ M

4. Molar solubility = $(K_{sp} / 27)^{1/4}$

5. (a) and (d) are salts with 1:1 stoichiometry so molar solubility = $(K_{sp})^{1/2}$
 (b) and (c) are salts with 1:2 stoichiometry so molar solubility = $(K_{sp} / 4)^{1/3}$
 Hence:
 (a) molar solubility = $(2.8 \times 10^{-7})^{1/2} = 5.3 \times 10^{-4}$ M
 (b) molar solubility = $(4.5 \times 10^{-17} / 4)^{1/3} = 2.2 \times 10^{-6}$ M
 (c) molar solubility = $(8.7 \times 10^{-9} / 4)^{1/3} = 1.3 \times 10^{-3}$ M
(d) molar solubility = \((5 \times 10^{-15})^{1/2} = 7 \times 10^{-8}\) M

The solubility increases in the order (d) < (b) < (a) < (c).

6. (a) (ii) \(X_2Y\)
 (b) (iii) \(2 \times 10^{-9}\)

Model 3: To dissolve or not to dissolve?

1. (a) \([\text{Mg}^{2+}(\text{aq})] = 0.050 \text{ M and } [\text{OH}^- (\text{aq})] = 0.060 \text{ M}\)
 (b) \(Q_{sp} = [\text{Mg}^{2+}(\text{aq})] [\text{OH}^- (\text{aq})]^2 = (0.050)(0.060)^2 = 1.8 \times 10^{-4}\)
 (c) \(Q_{sp} > K_{sp}\) so \(\text{Mg(OH)}_2\) (s) precipitate forms.

2. (a) \([\text{Mg}^{2+}(\text{aq})] = 0.025 \text{ M and } [\text{F}^- (\text{aq})] = 0.0050 \text{ M}\)
 \(Q_{sp} = [\text{Mg}^{2+}(\text{aq})][\text{F}^- (\text{aq})]^2 = (0.025)(0.0050)^2 = 6.3 \times 10^{-7}\)
 \(Q_{sp} > K_{sp}\) so precipitation will occur.
 (b) \([\text{Mg}^{2+}(\text{aq})] = 0.025 \text{ M and } [\text{F}^- (\text{aq})] = 0.00050 \text{ M}\)
 \(Q_{sp} = [\text{Mg}^{2+}(\text{aq})][\text{F}^- (\text{aq})]^2 = (0.025)(0.00050)^2 = 6.3 \times 10^{-9}\)
 \(Q_{sp} < K_{sp}\) so no precipitation will occur.

Model 4: Le Châtelier’s Principle and Solubility

1. \(K_{sp} = [\text{Pb}^{2+}(\text{aq})][\text{Cl}^-(\text{aq})]^2\)

2. Adding \(\text{Cl}^-\) ions would push the equilibrium in the direction of reactants: the solubility would decrease.

3. With \([\text{Cl}^-(\text{aq})] = 0.5 \text{ M}\),
 \([\text{Pb}^{2+}(\text{aq})] = K_{sp} / [\text{Cl}^-(\text{aq})]^2 = K_{sp} / (0.5)^2 = K_{sp} / 0.25 = 4K_{sp}\)

4. Adding extra \(\text{PbCl}_2\) has no effect. As the \([\text{Pb}^{2+}(\text{aq})]\) and \([\text{Cl}^-(\text{aq})]\) are already such that \([\text{Pb}^{2+}(\text{aq})][\text{Cl}^- (\text{aq})]^2 = K_{sp}\), the solution is saturated and it is not possible to dissolve more solid.

Model 5: Solubility and pH

1. \(K_{sp} = [\text{Fe}^{3+}(\text{aq})][\text{OH}^- (\text{aq})]^3\)

2. \(\text{pOH} = 14.000 - 8.179 = 5.821\). As \(\text{pOH} = -\log[\text{OH}^- (\text{aq})]\), \([\text{OH}^- (\text{aq})] = 10^{-5.821}\) M.

3. From Q5, \([\text{Fe}^{3+}(\text{aq})] = K_{sp} / [\text{OH}^- (\text{aq})]^3 = (1 \times 10^{-39}) / (10^{-5.821})^3 = 2.9 \times 10^{-22}\).

4. If the pH decreases, \([\text{OH}^- (\text{aq})]\) will also decrease. It is predicted that the pH of the ocean will fall by about 0.3 pH units over this century. \(\text{pOH}\) will thus increase by about 0.3 units.

As \([\text{Fe}^{3+}(\text{aq})] = K_{sp} / [\text{OH}^- (\text{aq})]^3\), this will lead to an increase in \([\text{Fe}^{3+}(\text{aq})]\). It is uncertain what the effect of this will be for marine life - see, for example:

\(\text{http://www.sciencemag.org/cgi/content/full/327/5966/676}\)

5. \([\text{Fe}^{3+}(\text{free})] \approx 10^{-19}\) M. Most of the \(\text{Fe}^{3+}\) is complexed in proteins such as transferrin and ferritin.