The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 4: Isomerism

The three pairs of isomers are constitutional, conformational and configurational (from left to right).

1. All of the molecules are constitutional isomers except those are conformational (see Q2) or configurational / stereoisomers (see Q3).
2.
 ![Chemical structures](image)

3.
 ![Chemical structures](image)

 Extension:

 Top row: (i) cyclic ether & chloride, (ii) cyclic ether (epoxide) & halide, (iii) alkene, chloride & alcohol and (iv) cyclic ether (epoxide) and halide.

 Second row: (i) ketone & chloride, (ii) cyclic ether & chloride, (iii) alkene, chloride & alcohol and (iv) acid chloride

 Third row: (i) alkene, chloride & alcohol, (ii) alkene, chloride & alcohol, (iii) enol & chloride, (iv) alkene, chloride & alcohol and (v) cyclic ether & chloride

4. From highest to lowest energy:

 ![Chemical structures](image)

5. No. At room temperature, the molecules have more than enough energy to rotate around a C-C bond. Conformers can only be isolated at (very) low temperature, in the solid phase.

Model 5: Structure Elucidation

1. Mass Spectrometry.

 The loss of an ethyl group would lead to a peak with an m/z value 29 less than the molecular ion peak.
\[m/z \] Fragment

99 M+ peak: containing one ^{13}C (1% chance).

98 **Molecular ion** – C₄H₁₀O

83 C₅H₇O (loss of –CH₃ - 15 mass units)

55 C₄H₇ (loss of –CH₂CO - 43 mass units)

43 C₃H₇ (loss –of CH₃COC – 45 mass units)

39 C₃H₃

29 CHO or C₂H₅

3-methyl-pent-3-enone (see below) is an isomer of 4-methyl-pent-3-enone: the molecular ion peak will occur in the same place. The fragmentation pattern will be slightly different.

\[\text{3-methyl-pent-3-enone} \]

3,4-dimethylpent-3-enone (see below) will show a molecular ion peak at 112 and will have a different (but similar) fragmentation pattern.

\[\text{3,4-dimethylpent-3-enone} \]

2. Infrared Spectroscopy (IR)
3. **UV-Vis.**

Each carbon atom in benzene is sp2 hybridized.

![Chemical structures](https://scilearn.sydney.edu.au/OrganicSpectroscopy/)

In conjugated compounds, there is an unhybridized p orbital on ≥4 adjacent atoms.

The usefulness of UV-Vis spectroscopy in organic chemistry is restricted to identifying conjugation.

Key to success: practice further by completing this week’s tutorial homework
Key to even greater success: practice even further by completing this week’s suggested exam questions.
For additional help on structure elucidation, see https://scilearn.sydney.edu.au/OrganicSpectroscopy/