1. As 1 eV = 1.602 × 10^{-19} J, the kinetic energy = \(T = 100 \text{eV} = 1.602 \times 10^{-17} \text{ J} \). Rearranging the equation for the kinetic energy in terms of the momentum and substituting in the value of the electron mass, \(m_e \), gives:

\[
p = \sqrt{2m_e \times T}
\]

\[
= \sqrt{2 \times (9.109 \times 10^{-31} \text{ kg}) \times (1.602 \times 10^{-17} \text{ J})} = 5.402 \times 10^{-24} \text{ kg m s}^{-1}
\]

As the momentum \(p = mv \), the electron velocity is:

\[
v = \frac{p}{m_e} = \frac{(5.402 \times 10^{-24} \text{ kg ms}^{-1})}{(9.109 \times 10^{-31} \text{ kg})} = 5.93 \times 10^6 \text{ ms}^{-1}
\]

From de Broglie’s relationship, the wavelength associated with a particle of momentum \(p \) is:

\[
\lambda = \frac{h}{p} = \frac{(6.626 \times 10^{-34} \text{ J s})}{(5.402 \times 10^{-24} \text{ kg m s}^{-1})} = 1.23 \times 10^{-10} \text{ m} = 1.23 \text{ angstroms}
\]

2. Moseley found empirically that a plot of \(\sqrt{\nu} \) vs. atomic number \(Z \) gives a straight line. The wavelengths first need to be converted into frequencies using \(\nu = \frac{c}{\lambda} \):

<table>
<thead>
<tr>
<th>element</th>
<th>(^{20}\text{Ca})</th>
<th>(^{22}\text{Ti})</th>
<th>(^{23}\text{V})</th>
<th>(^{25}\text{Mn})</th>
<th>(^{26}\text{Fe})</th>
<th>(^{28}\text{Ni})</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency (Hz)</td>
<td>(8.92 \times 10^{17})</td>
<td>(1.09 \times 10^{18})</td>
<td>(1.20 \times 10^{18})</td>
<td>(1.42 \times 10^{18})</td>
<td>(1.55 \times 10^{18})</td>
<td>(1.81 \times 10^{18})</td>
</tr>
</tbody>
</table>

A plot of \(\sqrt{\nu} \) vs \(Z \) is shown below and is indeed a straight line. For \(Z = 24 \) (Cr), the value of \(\sqrt{\nu} = 1.15 \times 10^{9} \) so \(\nu = 1.32 \times 10^{18} \text{ Hz} \). Using \(\lambda = \frac{c}{\nu} \) gives \(\lambda = 0.227 \text{ nm} \).
3. The energy levels get closer and closer together as \(n \) increases so the biggest gap is between the \(n = 1 \) and \(n = 2 \) levels.

Helium has \(Z = 2 \). The energy of the \(n = 1 \) and \(n = 2 \) levels are:

\[
E_1 = \frac{-E_R(2)^2}{(1)^2} = -4E_R \quad \text{and} \quad E_2 = \frac{-E_R(2)^2}{(2)^2} = -E_R
\]

The energy separation is \(3E_R = 3 \times (2.18 \times 10^{-18} \text{ J}) = 6.54 \times 10^{-18} \text{ J} \)

4.

5.

<table>
<thead>
<tr>
<th>Orbital</th>
<th>(n)</th>
<th>(l)</th>
<th>(m_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(d)</td>
<td>4</td>
<td>2</td>
<td>-2, -1, 0, 1, 2</td>
</tr>
<tr>
<td>1(s)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3(p)</td>
<td>3</td>
<td>1</td>
<td>-1, 0, 1</td>
</tr>
<tr>
<td>5(d)</td>
<td>5</td>
<td>2</td>
<td>-2, -1, 0, 1, 2</td>
</tr>
</tbody>
</table>

5.

2\(p\): 3\(p\):
Optional question.

The s-electrons in mercury must travel at high speeds due to their closeness to the large \((Z = 80)\) nuclear charge. As a consequence, their masses are relativistically increased. This causes a reduction in the size of s-orbitals and this, in turn, increases the attraction to the nucleus. As a result, the \(6s^2\) electrons are unexpectedly inert and reluctant to get involved in metallic type bonding. The weak interaction between Hg atoms causes it to be a liquid at room temperature.

Calculations in which relativity is ignored indicate that in a hypothetical universe in which relativistic effects are zero (i.e. one in which the speed of light is infinite), mercury would be a metallic solid like zinc and cadmium.