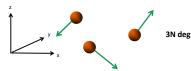
## **Chemistry 2**

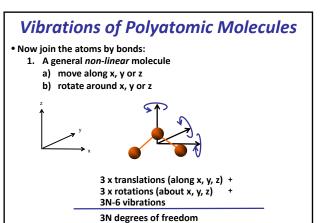
# Lecture 7 Vibrations of Polyatomic Molecules

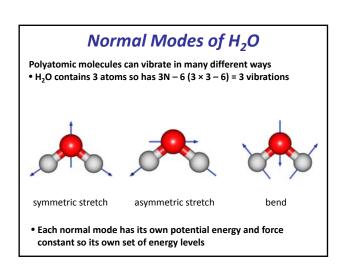


## Assumed knowledge


Only vibrations that give rise to a change in the dipole moment are IR active. A harmonic oscillator gives rise to a single peak in the IR spectrum as  $\Delta \nu = \pm 1$ . For a real molecule, bands with  $\Delta \nu = -1, 2, 3$  are also possible but become increasingly weak.

### **Learning outcomes**


- $\bullet\,$  Be able to calculate the number of vibrations in a polyatomic molecule (3N -6 or 3N-5 if it is linear)
- Be able to describe vibrations as stretches or bends and recognize that the number of stretches is equal to the number of bonds.
- $\bullet$  Be able to explain that all atoms oscillate at the same frequency in a normal mode
- Be able to explain why many normal modes give rise to characteristic frequencies
- Be able to explain the appearance of IR spectra of terms of (strong) fundamental transitions and weaker overtones and combinations


## **Vibrations of Polyatomic Molecules**

- A diatomic has obviously only one type of vibration. How many different ways can a larger molecule vibrate?
- Consider a collection of N atoms. With no bonding between them, each atom has 3 degrees of freedom corresponding to movement in the x, y, and z directions.



3N degrees of freedom for N atoms





# Vibrations of Polyatomic Molecules • Now join the atoms by bonds: 1. A general linear molecule a) move along x, y or z b) rotate around y or z rotation about x does not correspond to a genuine motion of the molecule 3 x translations (along x, y, z) + 2 x rotations (about x, y, z) + 3N-5 vibrations 3N degrees of freedom

# Normal Modes of CO<sub>2</sub> Polyatomic molecules can vibrate in many different ways • CO<sub>2</sub> contains 3 atoms and is linear so has (3 × 3 – 5) = 4 vibrations symmetric stretch degenerate bends asymmetric stretch

## **Absorbing IR Light**

To absorb light, the vibration must produce an oscillating charge
• it is *not* necessary for the molecule to have a dipole moment but
one must be produced during the vibration

 H<sub>2</sub>O: the symmetric and asymmetric stretches and the bend lead to a change in the dipole





 CO<sub>2</sub>: only the asymmetric stretch and the bend leads to a change in the dipole



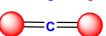


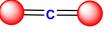
# Exercise.... How many vibrational modes do these molecules have? Ethylene, C<sub>2</sub>H<sub>4</sub> Ethanol, C<sub>2</sub>H<sub>5</sub>OH Which molecules can absorb radiation by vibrating?

### **Normal Modes**

- The 3N-6 characteristic vibrations of a (non-linear) polyatomic molecule are all called "normal modes" of vibration
- Some criteria for a vibration to be a suitable normal mode of vibration include:
  - the centre of mass cannot move (3 x translations)
  - there can be no overall rotation about the centre of mass (3 x rotations)
  - all atoms oscillate with the same frequency (though the amplitude of oscillation can be very small for some atoms in the molecule)

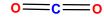
### **Normal Modes**

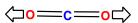

• The individual stretches and bends of different bonds in a molecule are coupled together.



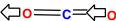

### **Normal Modes**

- The individual stretches and bends of different bonds in a molecule are coupled together.
- They combine in analogous ways to orbitals


O 2s orbitals are *perfectly* matched in energy: mixing is complete






C-O bond stretches are perfectly matched in energy: mixing is complete



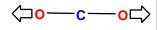


symmetric stretch

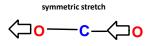


out of phase combination

asymmetric stretch


### **Normal Modes**

ullet Stretches are analogous to  $\sigma$  bonds: they can be worked out using the atomic orbitals on the central atom which are used for  $\sigma$  bonding


C 2s and  $2p_z$  are used to  $\sigma$  bond:

Take 'black' lobe as analogous to outward motion and 'white' lobe as analogous to inward motion









asymmetric stretch

### **Normal Modes**

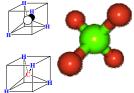
- $\bullet$  Stretches are analogous to  $\sigma$  bonds: they can be worked out using the atomic orbitals on the central atom which are used for
- In methane, C uses its 2s and each of its three 2p orbitals to  $make \ \sigma \ bonds$







symmetric stretch or "breathing mode"


### **Normal Modes**

- Stretches are analogous to  $\sigma$  bonds: they can be worked out using the atomic orbitals on the central atom which are used for
- In methane, C uses its 2s and each of its three 2p orbitals to make  $\sigma$  bonds (" $sp^3$ ")

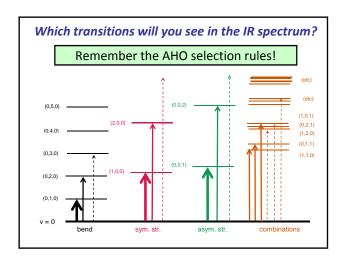


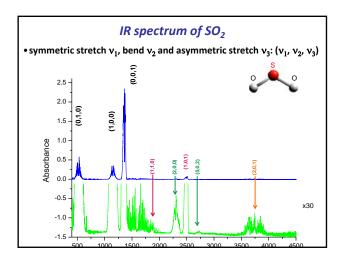






three degenerate asymmetric stretches


# Normal Modes • In SF<sub>6</sub>, S uses its: 3s, each of its three 3p orbitals and 3d<sub>x</sub>2<sub>-y</sub>2 and 3d<sub>2</sub>2


# Polyatomic IR Spectroscopy

- The extension from diatomic to polyatomic spectroscopy is straightforward...
- For a molecule with x vibrational modes:
  - x fundamental transitions:  $\Delta v_a = 1$
  - x first overtones, x second overtones etc:  $\Delta v_a = 2$ ,  $\Delta v_a = 3$ , ...
  - v = 0 is still the dominant populated state at normal temperature
- PLUS
  - Combinations of vibrations are now possible where several vibrations are simultaneous excited

e.g.  $v=0 \rightarrow \{v_{bend}=1\} + \{v_{sym \, stretch}=1\}$  with total  $\Delta v=1+1=2$ , so intensity is similar to first overtone.

# These transitions are represented using a "Jablonski diagram": • For example, for a triatomic with symmetric stretch $v_1$ , bend $v_2$ and asymmetric stretch $v_3$ : $(v_1, v_2, v_3)$ (etc.) (0.5.0) (0.0.2) (1.0.1) (1.0.1) (1.0.1) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.0) (1.1.

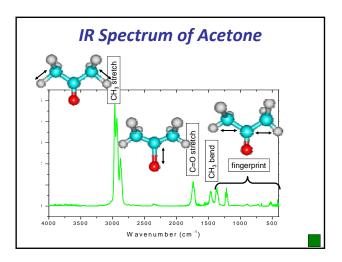




### What about bigger molecules?

- Bigger molecules have more modes of vibration (3N-6).
- Does the spectrum become more and more complicated?

  VECI


  VE
- Can we understand enough of the spectrum for it to be useful?

  YES!
- Some types of vibration have frequencies that remain quite constant ("characteristic frequency") across a wide variety of molecules => LOCAL MODES

## **Group Frequencieses**

- Just as with orbitals, if the individual vibrations are *not* perfectly matched in energy, the mixing is incomplete
- In cases where the matching is poor, the individual vibration is not mixed much and is almost "pure"

| Group       | Frequency<br>(cm <sup>-1</sup> ) | Group        | Frequency<br>(cm <sup>-1</sup> ) |
|-------------|----------------------------------|--------------|----------------------------------|
| O-H stretch | 3600                             | C=O          | 1700                             |
| N-H stretch | 3350                             | C=C          | 1650                             |
| C-H stretch | 2900                             | C-C stretch  | 1200                             |
| C-H bend    | 1400                             | C-CI stretch | 700                              |



## **Summary**

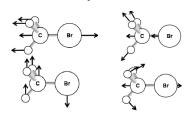
- There are 3N -6 vibrations in a polyatomic molecule (3N-5 if it is linear)
- There are different types of vibrations, the simplest of which are stretches and bends
- If there are x bonds in a molecule, there are x stretches
- All atoms oscillate at the same frequency in a normal mode
- Many normal modes give rise to characteristic frequencies which are useful for diagnostic chemistry
- Fundamental transitions dominate the IR spectrum.
   Overtones and combinations are much weaker
- The IR spectrum can be classified using a Jablonski diagram diagram

### Next lecture

 The vibrational spectrum of the triatomics and polyatomics (continued)

### Week 11 homework

- Work through the units worksheet and the practice problems at the end of the lectures and check your answers with those available online
- Play with the "IR Tutor" in the 3<sup>rd</sup> floor computer lab and with the online simulations:


http://assign3.chem.usyd.edu.au/spectroscopy/index.php

### **Practice Questions**

- In the IR spectrum of an organic molecule, the fundamental and first overtone for a C-H stretch mode appear at 3034 and 5941 cm<sup>-1</sup> respectively.
  - a) Calculate the harmonic vibrational frequency and anharmonicity constant for this mode (in cm<sup>-1</sup>).
  - b) Predict the wavenumber for the second overtone
  - c) The second overtone appears at 8727 cm-1. Explain any discrepancy between this value and your answer to (b)
- 2. Methyl bromide has been widely used as a fumigant. However, its use has been banned in the Vienna amendment to the Montreal Protocol because it is an ozone depleting substance. CH<sub>3</sub>Br is also a Greenhouse gas, mainly because of the C-Br stretching vibration, which has a frequency of 611 cm<sup>-1</sup>.
  - a) How many normal modes of vibration does CH<sub>3</sub>Br have?
  - b) Which of the schematic representations of CH3Br vibrational modes overleaf could **not** be a normal mode? Explain your answer.

### **Practice Questions**

2. (Continued)



c) When methyl bromide vibrates in the  $(CH_3)$  – Br stretching mode it behaves like a pseudo-diatomic molecule because the CH bonds in the methyl group do not vibrate and the whole  $CH_3$  group acts like a big atom. The fundamental transition in the  $(CH_3)$  – Br stretching mode is found at  $611 \, \text{cm}^{-1}$ . A weak overtone of the same transition is found at  $1215 \, \text{cm}^{-1}$ . Use this information to calculate the harmonic frequency and anharmonicity constant for this mode.

# Practice Questions 2. (Continued) d) Using the data from part c), estimate the bond dissociation energy for the C – Br bond in CH<sub>3</sub>Br. e) The thermodynamic bond dissociation energy for CH<sub>3</sub>Br is 276 kJ mol<sup>-1</sup> (which corresponds to 23,070 cm<sup>-1</sup>). Provide an explanation for the agreement / disagreement between this value and the value you calculated in part d) of this question. 3. Using the analogy with the s and p orbitals on N, sketch the form of the three N-H stretching modes in NH<sub>3</sub>. Which of these modes is IR active?