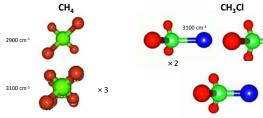
Chemistry 2

Lecture 8 IR Spectroscopy of Polyatomic Molecles

Assumed knowledge

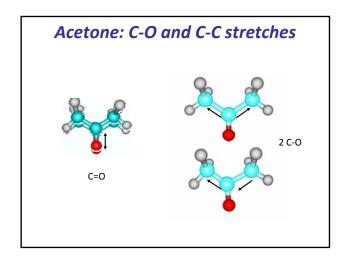

There are 3N-6 vibrations in a non-linear molecule and 3N-5 vibrations in a linear molecule. Only modes that lead to a change in the dipole moment are IR active. For each mode, bands with $\Delta\nu\!=\!\pm 1,\,2,\,3$ are possible but the overtones ($\Delta\nu\!>\!1$) are increasingly weak. Combination bands where more than one mode is simultaneously excited are also possible.

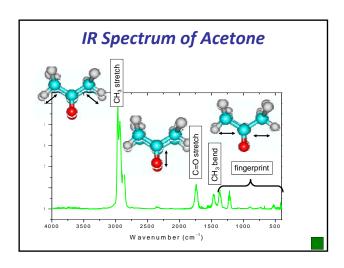
Learning outcomes

- Be able to pick the vibrational modes in a molecule which are likely to be coupled and those which are likely to be local modes
- Be able to explain the appearance of IR spectra of terms of (strong) fundamental transitions and weaker overtones and combinations
- Be able to use Jablonski diagrams to assign spectra

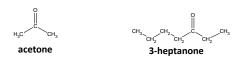
Local Modes

- Although all vibrations in a molecule can couple, for a number of normal modes the bulk of the vibrational amplitude can be found on a small number of atoms.
- This frequently occurs when the natural frequency of an individual vibration is does not closely match that of other vibrations in the molecule

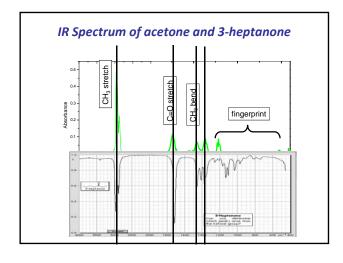

- All C-H equivalent: all C-H stretches are completely mixed
- All C-H equivalent: all C-H stretches are completely mixed
- C-Cl frequency is much lower: almost completely uncoupled

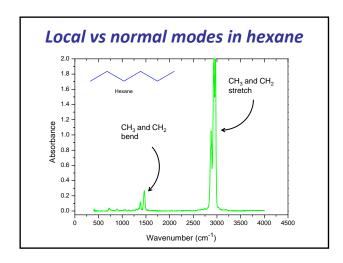

How can you pick local modes?

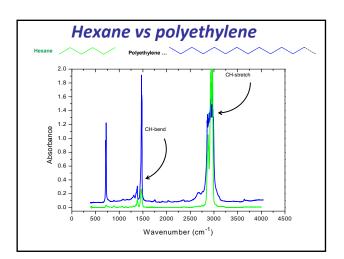
2 main things to look for:


- Vibration involves atom(s) with only one bond: this means the atom vibrates into space, rather than against other atoms.
- The vibrating atom(s) have a different natural vibrational frequency to the connected groups (atoms and bonds):this means their vibration is OUT OF RESONANCE with their neighbors.

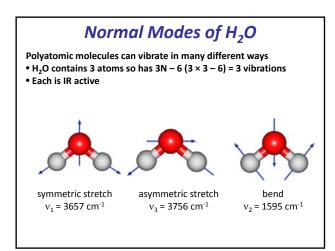
Which vibrations will be local modes? acetone H₃ One C-O stretch (1700 – 1730 cm⁻¹) Six C-H stretches (2900 – 3000 cm⁻¹): all mixed with each other Six C-H bends (1350 – 1450 cm⁻¹): all mixed with each other

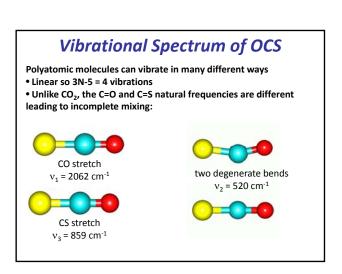


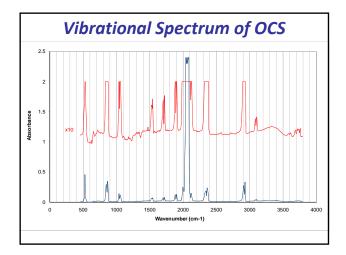



Which vibrations will be local modes?

• What type of vibrations will be local modes (with characteristic frequencies)?



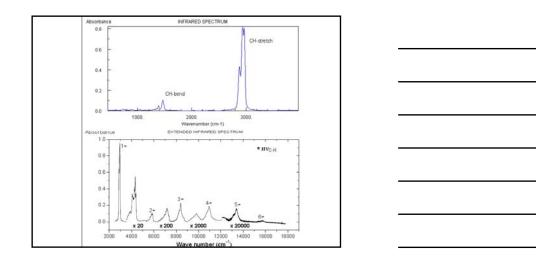

Jablonski diagrams


At least for simple molecules, a full analysis of the vibrational spectrum is often possible:

- Work out the number (3N-6) and IR activity of the vibrations
- The strongest bands are the *fundamentals*: single excitations of these modes ($\Delta \nu = 1$)
- First, second, third... overtones: $\Delta \nu$ = 2, 3, 4... with rapidly decreasing intensity
- Combinations: simultaneous excitation of different vibrations: $\Delta \nu$ = 1, 2, 3, 4 for each mode with rapidly decreasing intensity

Vibrational Spectrum of H₂O Polyatomic molecules can vibrate in many different ways • $v_1 = 3657 \text{ cm}^{-1}$, $v_2 = 1595 \text{ cm}^{-1}$, $v_3 = 3756 \text{ cm}^{-1}$, Label excitations as (v₁, v₂, v₃) • As first approximation, neglect effect of anharmonicity on energies 1000 2000 3000 5000 7000 cm (0, 1, 0)(0, 0, 1) (2, 0, 0), (1, 0, 1) or (0, 0, 2) 1 × 3756 cm⁻¹ (1, 0, 0)1 × 3657 cm⁻¹ (1, 1, 0)1 × 3657 + 1 × 1595 = 5252 cm⁻¹ • Overtones carry on into visible with decreasing absorption

Next lecture


· Raman spectroscopy

Week 12 tutorial and homework

- · Spectroscopy worksheet in the tutorials
- Complete the practice questions from the lectures

Practice Questions

- 1. Assign the spectrum of OCS in as much detail as you can.
- 2. Two infrared spectra of hexane (C_6H_{14}) are shown overleaf. The top spectrum is a conventional mid-IR spectrum with assignment of the two main transitions indicated. The bottom spectrum extends form the mid-IR to the visible and shows a number of CH-stretch overtone transitions with ever decreasing intensity (note the scale factor for the intensity).
 - a) Propose an assignment for the unidentified peak at about 4400 $\rm cm^{\text{-}1}$ in the bottom spectrum
 - b) The wavenumber of the fundamental CH-stretch transition from the top spectrum is v = 2962 cm $^{-1}$. The wavenumber of the fourth CH-stretch overtone (i.e. the v = 0 \rightarrow 5 transition marked "5*"), from the bottom spectrum, is v = 13401 cm $^{-1}$. Calculate the harmonic constant, ω_e , and the anharmonicity constant, $\omega_e x_e$ for the CH bond.
 - c) Estimate the bond dissociation energy, ${\it D}_{\rm 0,}$ of the CH bond in hexane.
 - d) The tabulated CH bond energy is 411 kJ mol-1. Comment on the agreement or disagreement with your answer to (c)

