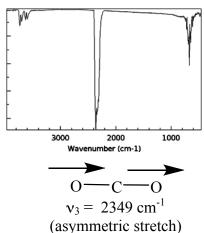
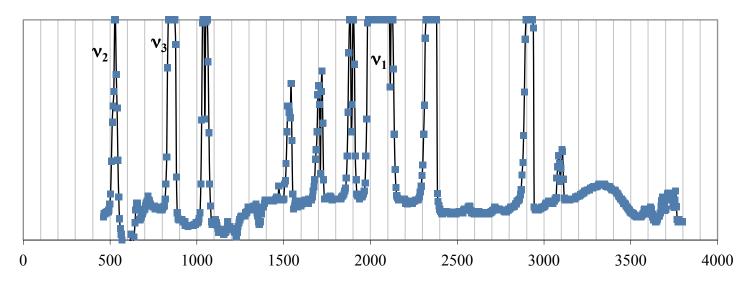

Assigning the IR Spectra of Polyatomic Molecules

Model 1: CO₂


The IR spectrum of CO_2 from 600 - 4000 cm⁻¹ is shown opposite and contains three bands.

The bands at 667 cm⁻¹ and 2349 cm⁻¹ are due to the bend, v_2 , and asymmetric, v_3 , vibrations respectively.

 $v_2 = 667 \text{ cm}^{-1}$ (doubly degenerate bend)



Critical thinking questions

- 1. Why does the symmetric stretch not appear in the IR spectrum?
- 2. Given that the vibrational frequency (in wavenumbers) is given by $\omega = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$, what would be the effect on the frequencies if the spectrum of ¹³CO₂ were measured? Only a qualitative answer is required. (*Hint*: consider the motion of the carbon atom in each vibrational mode).
- 3. There is a third, weak band in the spectrum of CO_2 at around 3700 cm⁻¹. It is a *combination* band due to excitation of two of the modes. Which two?

Model 2: OCS

OCS is isoelectronic with CO₂ and both involve carbon doubly bonded to two group 16 elements. The full IR spectrum of OCS is shown overleaf. The fundamentals corresponding v_1 , v_2 and v_3 have been labelled and are at 2062, 520 cm⁻¹ and 859 cm⁻¹ respectively. <u>Impurities</u>: CS₂ (1530 cm⁻¹) CO₂ (2350 cm⁻¹) Mark these on the spectrum!

The remaining bands are:

- **Overtones** where $\Delta v = 2, 3, 4$ in each mode. These have rapidly decreasing intensity as Δv increases. The *approximate* frequency of these bands in a simple multiple of the fundamental. For example, the first overtone for v_2 has $\Delta v = 2$ and frequency $\approx 2 \times 520$ cm⁻¹ = 1040 cm⁻¹
- **Combinations** where the modes are simultaneously excited. The *approximate* frequency of these bands is a simple sum of the frequencies of the fundamentals being excited.

For example, the combination of exciting 1 quanta in v_1 and 2 quanta in v_2 leads to the approximate frequency $\approx (1 \times 2062 + 2 \times 520) \text{ cm}^{-1} = 3102 \text{ cm}^{-1}$

1

Critical thinking questions

2.

1. By considering whether the modes will be local or coupled, *sketch* the form of v_1 , v_2 and v_3 in OCS.

Complete the table below to assign the spectrum as completely as you can.

\mathbf{v}_1	\mathbf{v}_2	v_3	ω	Obs?
0	1	0	520	Yes
0	2	0	1040	Yes
0	3	0		
0	4	0		
0	5	0		
0	6	0		
0	7	0		
0	0	1	859	Yes
0	0	2		
0	0	3		
0	0	4		

\mathbf{v}_1	\mathbf{v}_2	v_3	ω	Obs?	
1	0	0			
0	1	1			
0	2	1			
0	3	1			
0	4	1			
0	5	1			
0	6	1			
0	1	2			
0	2	2			
0	3	2			
0	4	2			

\mathbf{v}_1	\mathbf{v}_2	v_3	ω	Obs?
0	1	3		
0	2	3		
0	1	4		
1	1	0		
1	2	0	3102	Yes
1	3	0		
1	0	1		
1	0	2		
1	1	1		
1	2	1		