COMMONWEALTH OF AUSTRALIA
Copyright Regulation
WARNING
This material has been reproduced and communicated to you
by or on behalf of the University of Sydney pursuant to Part VA
of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you
may be the subject of copyright protection under the Act.

Do not remove this notice.
Ligand-Field Theory and Reaction Kinetics

A/Prof Adam Bridgeman
Room: 222
Email: A.Bridgeman@chem.usyd.edu.au
www.chem.usyd.edu.au/~bridge_a/chem2

Office Hours: Monday 2-4pm, Wednesday 2-4pm
Other times by appointment or by chance
Where Are We Going…?

- Week 4: Electronic Spectroscopy
 - Jahn-Teller effect
 - Electronic spectra of multi-electron atoms
 - Nephelauxetic effect and the spectrochemical series
 - Selection rules
 - Charge transfer transitions
- Week 5: Bonding in Complexes, Metalloproteins and Materials
 - π-Donor and π-Acceptor Ligands
 - Metal-metal bonding in clusters and solids
 - Role of ligand-field effects in electrochemistry
- Week 6: Kinetics and Ligand-Field Effects
 - Differential rate laws
 - Ligand substitution reactions
By the end of week 4…

Ligand-field (‘d-d’) spectroscopy
- be able to predict/explain number of bands for d\(^{1}\)-d\(^{9}\) (high-spin)
- be able to calculate \(\Delta_{\text{oct}}\) for d\(^{1}\), d\(^{3}\), d\(^{4}\), d\(^{6}\), d\(^{7}\), d\(^{8}\) and d\(^{9}\)
- be able to explain differences in band intensity (spin forbidden, orbitally forbidden, Laporte forbidden)
- be able to explain the appearance of charge transfer transitions
- be able to explain and predict the occurrence of the Jahn-Teller effect and its consequences (structural, spectroscopic, reaction rates)

Resources
- Slides for lectures 1-3
- Shriver and Atkins “Inorganic Chemistry” Chapter 19 (4\(^{\text{th}}\) Edition)
Schedule

• Lecture 1: Electronic absorption spectroscopy
 Jahn-Teller effect and the spectra of d^1, d^4, d^6 and d^9 ions

• Lecture 2: Interpreting electronic spectra
 Interelectron repulsion and the nephelauxetic effect

• Lecture 3: Interpreting electronic spectra
 Selection rules and charge transfer transitions
Revision – Ligand-Field Splitting

- In the absence of any ligands, the five d-orbitals of a M^{n+} transition metal ion are degenerate.
- Repulsion between the d-electrons and ligand lone pairs raises the energy of each d-orbital.
Revision – Ligand-Field Splitting

- Two of the d-orbitals point along x, y and z and are more affected than the average (\(e_g\))
- Three of the d-orbitals point between x, y and z and are affected less than the average (\(t_{2g}\))
- The ligand-field splitting (\(\Delta_{oct}\))

\[\Delta_{oct} = \Delta_{t_{2g}} - \Delta_{e_g}\]
Electronic Spectra of d^1 Ions

- A d^1 octahedral complex can undergo 1 electronic transition
- The ground state $(t_{2g})^1$ comprises three degenerate arrangements
- The excited state $(e_g)^1$ comprises two degenerate arrangements
- The electronic transition occurs at Δ_{oct}
Electronic Spectra of High Spin d^4 Ions

- A high spin d^4 octahedral complex can also undergo just 1 transition
- The ground state $(t_{2g})^2(e_g)^1$ comprises two degenerate arrangements
- The excited state $(t_{2g})^2(e_g)^2$ comprises three degenerate arrangements
- The electronic transition occurs at Δ_{oct}
- No other transitions are possible without changing the spin

\[\text{Cr}^{2+}(\text{aq}) \]
Electronic Spectra of High Spin d^6 and d^9 Ions

- High spin d^6 and d^9 octahedral complexes can also undergo just 1 transition.
- The electronic transition occurs at Δ_{oct}.
- No other transitions are possible changing the spin.
Effect of Distortion on the d-Orbitals

- Pulling the ligands away along z splits e_g and lowers the energy of d_{z^2}
- It also produces a \textit{much} smaller splitting of t_{2g} by lowering the energy of d_{xz} and d_{yz}
- $\Delta_{\text{oct}} \gg \delta_1 \gg \delta_2$

e_g \hspace{1cm} t_{2g}

Δ_{oct} \hspace{1cm} δ_1 \hspace{1cm} δ_2

\textbf{tetragonal elongation}
Which Complexes Will Distort?

- Relative to average: t_{2g} go down by $0.4\Delta_{oct}$ in octahedral complex
- Relative to average: e_g go up by $0.6\Delta_{oct}$ in octahedral complex
- Relative to average d_z^2 is stabilized by $\frac{1}{2}\delta_1$ and $d_{x^2-y^2}$ is destabilized by $\frac{1}{2}\delta_1$
- Relative to average d_{xz} and d_{yz} are stabilized by $\frac{2}{3}\delta_2$ and d_{xy} is destabilized by $\frac{1}{3}\delta_2$
Which Complexes Will Distort?

\[\Delta_{\text{oct}} \ggg \delta_1 \ggg \delta_2 \]

<table>
<thead>
<tr>
<th>(d^n)</th>
<th>configuration</th>
<th>degeneracy</th>
<th>LFSE</th>
<th>stabilized?</th>
<th>distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{2g})</td>
<td>(e_g)</td>
<td>3</td>
<td>(-0.4\Delta_{\text{oct}} - 0.33\delta_2)</td>
<td>yes</td>
<td>small</td>
</tr>
</tbody>
</table>

\[e_g \quad +0.6 \Delta_{\text{oct}} \quad +\frac{1}{2}\delta_1 \]

\[t_{2g} \quad -0.4 \Delta_{\text{oct}} \quad -\frac{1}{3}\delta_2 \quad +\frac{2}{3}\delta_2 \]
Which Complexes Will Distort?

\[\Delta_{\text{oct}} >>> \delta_1 >> \delta_2 \]

<table>
<thead>
<tr>
<th>(d^n)</th>
<th>configuration</th>
<th>degeneracy</th>
<th>LFSE</th>
<th>stabilized?</th>
<th>distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(t_{2g})</td>
<td>(e_g)</td>
<td>3</td>
<td>(-0.4\Delta_{\text{oct}} - 0.33\delta_2)</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-0.8\Delta_{\text{oct}} - 0.67\delta_2</td>
<td>yes</td>
<td>small</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>(-1.2\Delta_{\text{oct}})</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>(-0.6\Delta_{\text{oct}} - 0.5\delta_1)</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>no</td>
</tr>
</tbody>
</table>

Diagram:
- \(e_g\) with \(+0.6\Delta_{\text{oct}}\)
- \(t_{2g}\) with \(-0.4\Delta_{\text{oct}}\)
- \(+\frac{1}{2}\delta_1\)
- \(-\frac{1}{2}\delta_1\)
- \(+\frac{2}{3}\delta_2\)
- \(-\frac{1}{3}\delta_2\)
Which Complexes Will Distort?

\[\Delta_{\text{oct}} \gg \delta_1 \gg \delta_2 \]

<table>
<thead>
<tr>
<th>(d^n)</th>
<th>Configuration</th>
<th>Degeneracy</th>
<th>LFSE</th>
<th>Stabilized?</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(t_{2g}) 1 (e_g) 1</td>
<td>3</td>
<td>(-0.4\Delta_{\text{oct}} - 0.33\delta_2)</td>
<td>yes</td>
<td>small</td>
</tr>
<tr>
<td>(2)</td>
<td>(t_{2g}) 2 (e_g) 2</td>
<td>3</td>
<td>(-0.8\Delta_{\text{oct}} - 0.67\delta_2)</td>
<td>yes</td>
<td>small</td>
</tr>
<tr>
<td>(3)</td>
<td>(t_{2g}) 3 (e_g) 3</td>
<td>1</td>
<td>(-1.2\Delta_{\text{oct}})</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>(4)</td>
<td>(t_{2g}) 3 (e_g) 1</td>
<td>2</td>
<td>(-0.6\Delta_{\text{oct}} - 0.5\delta_1)</td>
<td>yes</td>
<td>large</td>
</tr>
<tr>
<td>(5)</td>
<td>(t_{2g}) 3 (e_g) 2</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>(6)</td>
<td>(t_{2g}) 4 (e_g) 2</td>
<td>3</td>
<td>(-0.4\Delta_{\text{oct}} - 0.33\delta_2)</td>
<td>yes</td>
<td>small</td>
</tr>
<tr>
<td>(7)</td>
<td>(t_{2g}) 5 (e_g) 2</td>
<td>3</td>
<td>(-0.8\Delta_{\text{oct}} - 0.67\delta_2)</td>
<td>yes</td>
<td>small</td>
</tr>
<tr>
<td>(8)</td>
<td>(t_{2g}) 6 (e_g) 2</td>
<td>1</td>
<td>(-1.2\Delta_{\text{oct}})</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>(9)</td>
<td>(t_{2g}) 6 (e_g) 3</td>
<td>2</td>
<td>(-0.6\Delta_{\text{oct}} - 0.5\delta_1)</td>
<td>yes</td>
<td>large</td>
</tr>
</tbody>
</table>
Which Complexes Will Distort?

\[\Delta_{\text{oct}} \gg \delta_1 \gg \delta_2 \]

- Low spin:

<table>
<thead>
<tr>
<th>(d^m)</th>
<th>configuration</th>
<th>degeneracy</th>
<th>LFSE</th>
<th>stabilized?</th>
<th>distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(t_{2g})</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(e_g)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(e_g)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(t_{2g})</td>
<td>6 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[e_g \quad +0.6 \Delta_{\text{oct}} \quad +\frac{1}{2} \delta_1 \]

\[t_{2g} \quad -0.4 \Delta_{\text{oct}} \quad -\frac{1}{3} \delta_2 \]
Which Complexes Will Distort?

- Large distortions (always seen crystallographically):
 - high spin d^4
 - low spin d^7
 - d^9
 - d^{10}

- Small distortions (often not seen crystallographically):
 - d^1
 - d^2
 - low spin d^4
 - low spin d^5
 - high spin d^6
 - high spin d^7
Jahn-Teller Theorem

- This is a general result known as the Jahn-Teller theorem:

 Any molecule with a degenerate ground state will distort

- antibonding

- bonding
Effect on Spectroscopy

- From Slide 6, there is one d-d transition for an octahedral d^1 ion.
- From Slide 15, a d^1 complex will distort and will not be octahedral.
- There are now 3 possible transitions.
- (A) is in infrared region and is usually hidden under vibrations.
- (B) and (C) are not usually resolved but act to broaden the band.

![Diagram of d-orbit transitions for Ti$^{3+}$(aq)](image-url)
Summary

By now you should be able to....

• Show why there is a single band in the visible spectrum for d^1, high spin d^4, high spin d^6 and d^9 octahedral complexes
• Obtain the value of Δ_{oct} from the spectrum of these ions
• Show the electronic origin of the (Jahn-Teller) distortion for high spin d^4, low spin d^7 and d^9 octahedral complexes
• Predict whether any molecule will be susceptible to a Jahn-Teller distortion
• Explain how the Jahn-Teller effect leads to broadening of bands in the UV/Visible spectrum

Next lecture

• Effects of interelectron repulsion
Semester 2 2003

With the aid of a labeled diagram, briefly describe how the operation of the Jahn Teller effect may give rise to an axially compressed tetragonal geometry in the complexes of a d^9 metal ion.
Consider the high-spin complexes, \([\text{Mn(OH}_2)_6]^{3+}\) and \([\text{Mn(OH}_2)_6]^{2+}\). The lowest energy d-d band in the spectrum of the \([\text{Mn(OH}_2)_6]^{3+}\) complex is at 476 nm.

Relevant constants and conversions: \(c = \text{speed of light} = 3.00 \times 10^8 \text{ m s}^{-1}\); \(h = \text{Planck constant} = 6.63 \times 10^{-34} \text{ J s}\); \(N_A = \text{Avogadro constant} = 6.02 \times 10^{23} \text{ mol}^{-1}\); Faraday constant = 96,485 C mol\(^{-1}\).

(i) Give the d-electron configuration for each of the Mn centres; and draw appropriate d-orbital energy diagrams and illustrate the distributions of the d electrons within them.

(ii) Explain which of the two complexes has Jahn-Teller distortions in the ground state and how this will effect the electronic absorption spectrum of the complex with such a distortion.

(iii) Calculate the Ligand Field Stabilisation Energy (LFSE) in kJ mol\(^{-1}\) for each of the above complexes.