COMMONWEALTH OF AUSTRALIA

Copyright Regulation

WARNING

This material has been reproduced and communicated to you
by or on behalf of the University of Sydney pursuant to Part VA
of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you
may be the subject of copyright protection under the Act.

Do not remove this notice.
Schedule

• Last Week: Electronic spectroscopy
 Interelectron repulsion, covalency and spin-orbit coupling

• Lecture 4: Re-cap

• Lecture 5: \(\pi\)-Acceptor Ligands and Biology
 \(N_2\), \(CO\), \(N_2\) and \(O_2\) complexes

• Lecture 6: M-M bonding
 Multiple bonds and metal clusters
Summary of the Last Lecture

Spin selection rule
- The spin cannot change during an electronic transition
- ‘Relaxed’ by spin-orbit coupling for heavy elements

Orbital selection rule
- ‘d-d’ transitions cannot occur
- ‘Relaxed’ by d-p mixing in complexes without centre of inversion (e.g. tetrahedron)

Laporte selection rule
- No ‘d-p’ mixing possible in complexes with a centre of inversion (e.g. octahedron or square planar complex)
- ‘Relaxed’ due to molecular vibrations

Charge transfer transitions
- LMCT, MLCT and IVT – cover up ‘d-d’ if in visible region
Selection Rules and Band Intensity

- The height of the band in the spectrum is called the 'molar extinction coefficient' - symbol ε:

<table>
<thead>
<tr>
<th>ε (mol(^{-1}) cm(^{-1}))</th>
<th>type of transition</th>
<th>type of complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-3} - 1$</td>
<td>spin forbidden</td>
<td>octahedral d(^5) complexes (e.g. [Mn(H(_2)O)(_6)]^{2+}$)</td>
</tr>
<tr>
<td></td>
<td>orbitally forbidden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laporte forbidden</td>
<td></td>
</tr>
<tr>
<td>$1 - 10$</td>
<td>spin forbidden</td>
<td>tetrahedral d(^5) complexes (e.g. [MnCl(_4)]^{2-+}$)</td>
</tr>
<tr>
<td></td>
<td>orbitally forbidden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$10 - 10^2$</td>
<td>spin allowed</td>
<td>octahedral and square planar complexes</td>
</tr>
<tr>
<td></td>
<td>orbitally forbidden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laporte forbidden</td>
<td></td>
</tr>
<tr>
<td>$10 - 10^3$</td>
<td>spin allowed</td>
<td>tetrahedral complexes</td>
</tr>
<tr>
<td></td>
<td>orbitally forbidden</td>
<td></td>
</tr>
<tr>
<td>$> 10^3$</td>
<td>LMCT, MLCT, IVT</td>
<td></td>
</tr>
</tbody>
</table>
Oxidation States of Manganese: +7

- $[\text{MnO}_4]^-$: the permanganate ion

 - deep purple colour
 - (absorbs green/yellow $\sim 18000 \text{ cm}^{-1}$)

 - high metal charge (+7) makes it highly oxidizing (and easily reduced)
 - O \rightarrow M charge transfer occurs at relatively low energy (in the visible region)
 - LMCT - orbitally allowed and spin allowed so highly intense
Oxidation States of Manganese: VI

• \([\text{MnO}_4]^{2-}\): the manganate ion

\[
2\text{MnO}_4^- (\text{aq}) + C_6H_{10}(l) + 2\text{OH}^- (\text{aq}) \rightarrow 2\text{MnO}_4^{2-} (\text{aq}) + C_6H_{10}(\text{OH})_2(\text{aq})
\]

➢ high metal charge (+6) makes it highly oxidizing (and easily reduced)

➢ O \rightarrow M \text{ charge transfer occurs at relatively low energy (in the visible region but at higher energy than for permanganate)}

➢ LMCT - orbitally allowed and spin allowed so highly intense

➢ \(d^1\) - ligand-field transition lost under LMCT bands

deep green colour

(absorbs purple \(\sim 25000 \text{ cm}^{-1}\))
Oxidation States of Manganese: IV and II

- **MnO$_2$:** manganese dioxide
 \[\text{MnO}_4^{2-}(aq) + 3\text{H}^+(aq) + \text{C}_6\text{H}_{10}(l) \rightarrow 2\text{MnO}_2(s) + \text{C}_6\text{H}_{10}(\text{OH})_2(aq) \]

- **Mn$^{2+}$(aq):** manganese ion
 \[\text{MnO}_2(s) + 4\text{H}^+(aq) + 2\text{Fe}^{2+}(aq) \rightarrow \text{Mn}^{2+}(aq) + 2\text{Fe}^{3+}(aq) + 2\text{H}_2\text{O}(l) \]

- Pale pink
- Brown

- Low metal charge (+2) so O → M charge transfer in ultraviolet
- High spin d5 - all transitions are spin forbidden
- Similar *colour* to permanganate but very different *intensity*
Manganese(II)

- Mn$^{2+}$ d5: all transitions are spin forbidden:
 - become possible through spin-orbit coupling
 - spin-forbidden transitions are *extremely* weak for 3d metal complexes
 - bands due to spin-forbidden transitions are normally hidden under the spin allowed bands
 - for d5, there are no spin-allowed bands allowing spin-forbidden bands to be seen
Manganese(II)

- Mn$^{2+}$ d5: all transitions are spin forbidden
 - turning a spin over requires energy even if the orbital is not changed
 - called a “spin flip transition”
 - as the orbital occupation does not change, there is very little change in the M-L bond lengths

![Diagram showing eg and t$_{2g}$ orbitals in the ground and excited states.](image-url)
Octahedral and Tetrahedral Cu(II)

- Cu$^{2+}$

\[
[Cu(H_2O)_6]^{2+}(aq) + 4Cl^-(aq) \leftrightarrow [CuCl_4]^{2-}(aq) + 6H_2O(l)
\]

- pale blue
 - absorbs ~ 13000 cm$^{-1}$

- green
 - absorbs ~ 10000 cm$^{-1}$

- d^9: one d-d transition with frequency = Δ_{oct} or Δ_{tet}
 - $\Delta_{\text{oct}} > \Delta_{\text{tet}}$ (fewer ligands in a tetrahedron)
- Higher intensity for tetrahedral complex
 - d-p mixing possible in tetrahedron
 - d-p mixing only due to vibrations for octahedron
Octahedral and Tetrahedral Co(II)

- \(\text{Co}^{2+} \)

\[
[\text{Co(H}_2\text{O)}_6]^{2+}(\text{aq}) + 4\text{Cl}^-(\text{aq}) \leftrightarrow [\text{CoCl}_4]^{2-}(\text{aq}) + 6\text{H}_2\text{O} (\text{l})
\]

- pale pink absorbs at 8680, 18400 and 19200 cm\(^{-1}\)
- blue absorbs at 4780, 15700 and 16230 cm\(^{-1}\)

- \(\text{d}^7 \): three d-d transitions
 - \(\Delta_{\text{oct}} = v_2 - v_1 = (18400 - 8680) = 9720 \text{ cm}^{-1} \)
- Higher intensity for tetrahedral complex
 - d-p mixing possible in tetrahedron
 - d-p mixing only due to vibrations for octahedron
Summary

By now you should be able to

• explain the *number* of bands
• obtain Δ_{oct} from spectrum for $d^1, d^3, d^4, d^6, d^7, d^8$ and d^9
• predict relative intensity of spin-allowed vs spin forbidden, octahedral vs tetrahedral and ligand-field vs charge-transfer transitions