COMMONWEALTH OF AUSTRALIA
Copyright Regulation
WARNING
This material has been reproduced and communicated to you
by or on behalf of the University of Sydney pursuant to Part VA
of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you
may be the subject of copyright protection under the Act.

Do not remove this notice.
Schedule

• Lecture 7: M-M bonds
 δ-bonds and bonding in metal clusters

• Lecture 8: Rates of reaction
 Ligand-exchange reactions, labile and inert metal ions

• Lecture 9: Redox reactions
 Inner and outer-sphere reactions
Summary of Last Lecture

Ligand substitution reactions

• Dissociative and associative mechanisms possible
• Rates vary widely for transition metal complexes
 ➢ M^{3+} slower than M^{2+}
 ➢ d^n with large LFSE are slow (d^3, d^8 and low spin d^{5-7})

Today’s lecture

• e⁻ transfer reactions
Redox Reactions

• Redox reactions are very important in inorganic and bioinorganic chemistry. The shuttling of electrons between transition metal cations is at the centre of a wide variety of vital biological processes.

• Redox reactions involving transition metal complexes generally occur very rapidly:
 - thermodynamics (using E^0 values) is very useful in predicting the outcome of reactions.

• e^- transfer reactions appear to occur via two reaction mechanisms:
 - outer sphere
 - inner sphere
Outer Sphere e- Transfer

- The self-exchange reaction below is believed to occur via an outer sphere mechanism

\[
*\text{Fe(H}_2\text{O)}_6^{2+} + \text{Fe(H}_2\text{O)}_6^{3+} \rightarrow *\text{Fe(H}_2\text{O)}_6^{3+} + \text{Fe(H}_2\text{O)}_6^{2+}
\]

- The two complexes (the **reductant** and the **oxidant**):
 - diffuse together in solution to form **outer sphere** complex,
 - an electron is transferred from reductant to oxidant
 - the complexes diffuse apart
 - the ligands remain attached throughout the reaction

- Most redox reactions in biology occur via this mechanism
 - **Marcus theory** explains the rate of these reactions (1992 Nobel prize for Chemistry)
Outer Sphere e^- Transfer

- The self-exchange reaction below is believed to occur via an outer sphere mechanism

$^{*}\text{Fe(H}_2\text{O)}_6^{2+} + \text{Fe(H}_2\text{O)}_6^{3+} \rightarrow ^{*}\text{Fe(H}_2\text{O)}_6^{3+} + \text{Fe(H}_2\text{O)}_6^{2+} \quad \Delta G = 0$

- e^- transfer occurs very rapidly - nuclei are too heavy to respond the Franck-Condon principle

- The products are formed with the geometries of the reactants

- After formation, they can relax to their true bond lengths
Outer Sphere e\(^{-}\) Transfer

- The products are formed with the geometries of the reactants:
 - ionic radii: Fe\(^{2+}\) (75 pm) > Fe\(^{3+}\) (69 pm)
 - if reactants are in their ground states, the products will be formed in excited states:

\[
\begin{align*}
*[(\text{H}_2\text{O})_5\text{Fe}―\text{OH}_2]^{2+} & \quad \text{e}^- \\
[(\text{H}_2\text{O})_5\text{Fe}-\text{OH}_2]^{3+} & \quad \longrightarrow \\
*[(\text{H}_2\text{O})_5\text{Fe}―\text{OH}_2]^{3+} & \quad \text{bonds too long}
\end{align*}
\]

\[
\begin{align*}
[(\text{H}_2\text{O})_5\text{Fe}-\text{OH}_2]^{3+} & \quad \text{transfer} \\
*[(\text{H}_2\text{O})_5\text{Fe}―\text{OH}_2]^{2+} & \quad \text{bonds too short}
\end{align*}
\]

- These excited states will then relax, releasing energy
- BUT \(\Delta G = 0\) so energy seems to have been created from nothing

\[
*[((\text{H}_2\text{O})_5\text{Fe}-\text{OH}_2]^{3+} \\
\text{relax} \\
[(\text{H}_2\text{O})_5\text{Fe}―\text{OH}_2]^{2+}
\]

\text{REACTION CANNOT BE OCCURRING FROM GROUND STATES}
Outer Sphere e⁻ Transfer

- There is an activation step in which bonds in Fe(H₂O)₅²⁺ are shortened and those in Fe(H₂O)₆³⁺ are lengthened so they are exactly the same.

![Diagram](image)

- Activation energy provided in (1) = relaxation energy in (3) so $\Delta G = 0$.
Outer Sphere e⁻ Transfer

• The activation step involves making the bond lengths in oxidant and reductant the same:

 ➢ if oxidant and reductant have very different bond lengths →
 activation energy is large → reaction is slow

 ➢ if oxidant and reductant have similar bond lengths →
 activation energy is small → reaction is fast

Need to compare bond lengths in oxidant and reductant to understand rate:

• Metals get smaller across period due to increasing Z
• Occupation of e_g^* orbitals lengthens bonds
• M^{3+} are smaller than M^{2+} due to charge
Ionic Radii - Recap

Radii of M^{2+} ions (pm)

- Occupation of e_g^* orbitals lengthens bonds
- Metals get smaller across period due to increasing Z
Ionic Radii - Recap

- Occupation of e_g^* orbitals lengthens bonds
- Metals get smaller across period due to increasing Z
- M^{3+} are smaller than M^{2+} due to charge
Outer Sphere e$^-\$ Transfer

- The activation step involves making the bond lengths in oxidant and reductant the same:
 - if oxidant and reductant have very different bond lengths \rightarrow activation energy is large \rightarrow reaction is slow
 - if oxidant and reductant have similar bond lengths \rightarrow activation energy is small \rightarrow reaction is fast

<table>
<thead>
<tr>
<th>metal ion pair</th>
<th>difference in M-O bond lengths</th>
<th>rate constant (M$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{2+}$(aq) (d^6), Fe$^{3+}$(aq) (d^5)</td>
<td>13 pm</td>
<td>4</td>
</tr>
<tr>
<td>Cr$^{2+}$(aq) (d^4), Cr$^{3+}$(aq) (d^3)</td>
<td>18 pm</td>
<td>2×10^{-5}</td>
</tr>
</tbody>
</table>
Inner Sphere e⁻ Transfer

- A different and *faster* mechanism operates if
 - either the oxidant or the reductant possesses a ligand capable of bonding to two metals at once ("bridging") AND
 - the other reactant is labile (able to exchange ligands)

\[
\text{[Cr(H}_2\text{O)}_6\text{]}^{2+} + \text{[Co(H}_2\text{O)}_5\text{(Cl)}]\text{]}^{2+} \rightarrow \text{[H}_2\text{O)}_5\text{Cr-Cl-Co(H}_2\text{O)}_5\text{]}^{4+} + \text{H}_2\text{O} \\
\text{inner-sphere complex}
\]

\[
\text{[H}_2\text{O)}_5\text{Cr-Cl-Co(H}_2\text{O)}_5\text{]}^{4+} \underset{\text{e}^- \text{ transfer}}{\rightarrow} \text{[H}_2\text{O)}_5\text{Cr-Cl-Co(H}_2\text{O)}_5\text{]}^{4+} \\
\text{Cr(II)-Cl-Co(III)} \quad \text{Cr(III)-Cl-Co(II)} \\
\text{inner-sphere complex} \quad \text{inner-sphere complex}
\]

\[
\text{[H}_2\text{O)}_5\text{Cr-Cl-Co(H}_2\text{O)}_5\text{]}^{4+} + \text{H}_2\text{O} \rightarrow \text{[H}_2\text{O)}_5\text{Cr-Cl]}^{2+} + \text{[Co(H}_2\text{O)}_6\text{]}^{2+}
\]
Inner Sphere e- Transfer

• The inner sphere reaction is possible as
 - Cl- has >1 lone pair so can bond to Cr and Co in the inner-sphere complex
 - Cr2+ is labile (d4 – Jahn-Teller distorted)

• Note that
 - once e- transfer has occurred, it is the Co2+ which is labile and Cr3+ is inert
 - therefore bridging ligand leaves with Cr3+

\[
[(\text{H}_2\text{O})_5\text{Cr-Cl-Co(}\text{H}_2\text{O})_5]^4+ + \text{H}_2\text{O} \rightarrow [(\text{H}_2\text{O})_5\text{Cr-Cl}]^{2+} + [\text{Co(}\text{H}_2\text{O})_6]^{2+}
\]

Cr(III)-Cl-Co(II)
inner-sphere complex
Toxicity of CrO_4^-

- CrO_4^- is a powerful oxidizing agent:

$$\text{CrO}_4^{2-} + 4\text{H}_2\text{O} + 3\text{e}^- \rightarrow \text{Cr(OH)}_3 + 5\text{OH}^- \quad E^0 = +0.6 \text{ V}$$

- It acts as a skin irritant due to oxidation of organic molecules
 - however, as reduction is a 3e^- process, it is metastable as few organic oxidations involve 3 electrons

- It therefore passes through the skin
 - it has a very similar structure to SO_4^{2-} and is therefore “allowed” to pass through cell and nuclear membranes

- In the cell nucleus
 - it slowly reduces to Cr(III) (by oxidizing DNA or proteins)
 - Cr^{3+} binds to DNA and proteins causing mutations and cancers
 - Cr^{3+} (d^3) is inert so it is very difficult to remove
Summary

By now you should be able to....

• Explain that the key steps in the outer sphere mechanism
• Explain why the activation step involves the bond lengths in oxidant and reductant becoming the same
• Explain why and predict why the difference in oxidant and reductant bond lengths affects the rate
• Explain the key steps in the inner sphere mechanism
• Predict whether an e transfer mechanism can occur via the inner sphere mechanism by looking for the presence of a bridging ligand on one reactant and the lability of the other reactant
Practice

1. Explain the differences in the rate constants for the following self-exchange, electron transfer reactions:

\[
\begin{align*}
[\text{Fe(H}_2\text{O)}_6]^{2+} + [\text{Fe(H}_2\text{O)}_6]^{3+} & \rightarrow [\text{Fe(H}_2\text{O)}_6]^{3+} + [\text{Fe(H}_2\text{O)}_6]^{2+} & \text{k} = 4 \text{ M}^{-1} \text{s}^{-1} \\
[\text{Fe(bpy)}_6]^{2+} + [\text{Fe(bpy)}_6]^{3+} & \rightarrow [\text{Fe(bpy)}_6]^{3+} + [\text{Fe(bpy)}_6]^{2+} & \text{k} > 10^6 \text{ M}^{-1} \text{s}^{-1} \\
[\text{Co(NH}_3)_6]^{2+} + [\text{Co(NH}_3)_6]^{3+} & \rightarrow [\text{Co(NH}_3)_6]^{3+} + [\text{Co(NH}_3)_6]^{2+} & \text{k} = 10^{-6} \text{ M}^{-1} \text{s}^{-1} \\
\end{align*}
\]

(Hint: bpy = bipyridyl, a strong-field ligand, [Co(NH₃)₆]³⁺ is diamagnetic).

2. The rate of reduction of [Co(NH₃)₅(H₂O)]³⁺ by Cr²⁺(aq) is seven orders of magnitude slower than reduction of its conjugate base, [Co(NH₃)₅(OH)]³⁺ by Cr²⁺(aq). The rates of the reduction of the same cobalt complexes by [Ru(NH₃)₆]²⁺ differ by only a factor of 10.

Explain these observations.

(Hint: OH⁻ is able to bridge)
Summary of Course – week 4

Ligand-field (‘d-d’) spectroscopy
• be able to predict/explain number of bands for d\(^1\)-d\(^9\) (high-spin)
• be able to calculate \(\Delta_{\text{oct}}\) for d\(^1\), d\(^3\), d\(^4\), d\(^6\), d\(^7\), d\(^8\) and d\(^9\)
• be able to explain differences in band intensity (spin forbidden, orbitally forbidden, Laporte forbidden)
• be able to explain the appearance of charge transfer transitions
• be able to explain and predict the occurrence of the Jahn-Teller effect and its consequences (structural, spectroscopic, reaction rates)

Resources
• Slides for lectures 1-4
• Shriver and Atkins “Inorganic Chemistry” Chapter 9 (4\(^{th}\) Edition)
• Housecroft and Sharpe “Inorganic Chemistry” Chapter 20.6-7 (2\(^{nd}\) Edition)
Complexes of π-acceptor ligands

- be able to explain synergic (σ-donation, π-back donation) model for bonding in M-CO and M-N₂ complexes
- be able to explain reduction in CO stretching frequency in complex
- be able to explain changes in CO stretching frequency with metal charge and with ligands
- electron counting in CO, N₂ and NO complexes: 18 e⁻ rule

Resources

- Slides for lectures 5-6
- Housecroft and Sharpe “Inorganic Chemistry” Chapter 23.2 (2nd Edition)
Summary of Course – week 6

Metal-metal bonding
- be able to predict bond order for M_2L_x dimers using d-electron count and σ, π and δ molecular orbital diagram
- be able to predict bond order in larger metal-halide clusters using d-electron count shared over edges of cluster
- be able to predict bond order in metal carbonyl clusters using 18 e$^-$ rule

Reaction mechanisms
- be able to describe ligand exchange mechanisms
- be able to explain role of metal charge and LFSE in rate of ligand exchange
- be able to describe electron transfer reaction mechanisms
- be able to predict relative rate of outer sphere reaction for different metals

Resources
- Slides for lectures 7-9
- Housecroft and Sharpe “Inorganic Chemistry” Chapter 23.6, 25