Where Are We Going…?

- **Week 10: Orbitals and Terms**
 - Russell-Saunders coupling of orbital and spin angular momenta
 - Free-ion terms for p^2
- **Week 11: Terms and ionization energies**
 - Free-ion terms for d^2
 - Ionization energies for $2p$ and $3d$ elements
- **Week 12: Terms and levels**
 - Spin-orbit coupling
 - Total angular momentum
- **Week 13: Levels and ionization energies**
 - $j-j$ coupling
 - Ionization energies for $6p$ elements

Revision – Atomic Orbitals

- For any 1 e⁻ atom or ion, the Schrödinger equation can be solved
- The solutions are atomic orbitals and are characterized by n, l, and m_l quantum numbers

\[H\psi = E\psi \]

- E is energy of the orbital ψ
- H is the 'Hamiltonian' - describing the forces operating:
 - Kinetic energy due to motion \(\frac{1}{2} mv^2 \)
 - Potential energy due attraction to nucleus \(-\frac{Ze}{r} \)
 - Total Hydrogen-like Hamiltonian \(H_{\text{H-like}} \)
Atomic Orbitals - Quantum Numbers

- For any 1-e- atom or ion, the Schrödinger equation can be solved
- The solutions are **atomic orbitals** and are characterized by \(n, l \) and \(m_l \) quantum numbers
 - Principal quantum number, \(n = 1, 2, 3, 4, 5, 6, \ldots \)
 - Orbital quantum number, \(l = n-1, n-2, n-3, 0 \) = number of nodal planes
 - Magnetic quantum number, \(m_l = l, l-1, l-2, \ldots, -l \)

\[l = 0: \text{s} \quad l = 1: \text{p} \quad l = 2: \text{d} \]

Orbital Quantum Number

- Orbital quantum number, \(l = n-1, n-2, n-3, 0 \) = number of nodal planes
- Magnetic quantum number, \(m_l = l, l-1, l-2, \ldots, -l \) = orientation of orbital
 - e.g. \(l = 2 \) gives \(m_l = 2, 1, 0, -1, -2 \); so \(2l+1 = 5 \) d-orbitals

Magnetic Quantum Number

- Orbital quantum number, \(l = n-1, n-2, n-3, 0 \) = number of nodal planes
- Magnetic quantum number, \(m_l = l, l-1, l-2, \ldots, -l \) = orientation of orbital
 - related to magnitude of orbital angular momentum
 - related to direction of orbital angular momentum

\[l = 2 \]

\[m_l = 2 \quad m_l = 1 \quad m_l = 0 \quad m_l = -1 \quad m_l = -2 \]
Spin Quantum Number

- All electrons have spin quantum number, \(s = \frac{1}{2} \)
- Magnetic spin quantum number, \(m_s = s, s - \frac{1}{2} \) or \(-\frac{1}{2}, 2s + 1 = 2 \) values

Many Electron Atoms

- For any 2-e⁻ atom or ion, the Schrödinger equation cannot be solved
- The H-like approach is taken for every electron

\[
H_{\text{H-like}} = \sum_i \frac{1}{2} mv_i^2 + \sum_i -\frac{Ze}{r_i}
\]

- Treatment leads to configurations
 - for example: \(\text{He} \ 1s^2 \)
 - \(\text{C} \ 1s^2 2s^2 2p^2 \)

- Neglects interaction between electrons
 - \(e^- e^- \) repulsion is of the same order of magnitude as \(H_{\text{H-like}} \)

Many Electron Atoms – \(p^1 \) Configuration

- A configuration like \(p^1 \) represents 6 electron arrangements with the same energy
 - there are three \(p \)-orbitals to choose from as \(l = 1 \)
 - electron may have up or down spin

<table>
<thead>
<tr>
<th>(m_l)</th>
<th>(m_s)</th>
<th>microstate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+(\frac{1}{2})</td>
<td>1 ((1))</td>
</tr>
<tr>
<td>-1</td>
<td>-(\frac{1}{2})</td>
<td>0 ((1))</td>
</tr>
<tr>
<td>0</td>
<td>+(\frac{1}{2})</td>
<td>-1 ((1))</td>
</tr>
<tr>
<td>0</td>
<td>-(\frac{1}{2})</td>
<td>0 ((1))</td>
</tr>
<tr>
<td>-1</td>
<td>+(\frac{1}{2})</td>
<td>-1 ((1))</td>
</tr>
</tbody>
</table>
Many Electron Atoms – p^2 Configuration

- A configuration like p^2 represents even more electron arrangements
- Because of e^-/e^- repulsion, they do not all have the same energy:
 - electrons with parallel spins repel one another less than electrons with opposite spins
 - electrons orbiting in the same direction repel one another less than electrons with orbiting in opposite directions

\[\begin{array}{c|c}
1 & 0 \\
-1 & -1 \\
\end{array} \]

\[\begin{array}{c}
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\end{array} \]

lower in energy than

\[\begin{array}{c|c}
1 & 0 \\
-1 & -1 \\
\end{array} \]

\[\begin{array}{c}
\uparrow & \uparrow \\
\downarrow & \downarrow \\
\end{array} \]

lower in energy than

Many Electron Atoms – L

- For a p^2 configuration, both electrons have $l = 1$ but may have $m_l = 1, 0, -1$
- L is the total orbital angular momentum

\[L_{\text{max}} = l_1 + l_2 = 2 \]
\[L_{\text{min}} = l_1 - l_2 = 0 \]
\[L = l_1 + l_2, l_1 + l_2 - 1, \ldots, l_1 - l_2 \]
\[= 2, 1, 0 \]

For each L, $M_l = L, L-1, \ldots, -L$

L: 0, 1, 2, 3, 4, 5, 6 ...
code: S, P, D, F, G, H, I ...

Many Electron Atoms – S

- Electrons have $s = \frac{1}{2}$ but may have $m_s = +\frac{1}{2}$ or $-\frac{1}{2}$
- S is the total spin angular momentum

\[S_{\text{max}} = s_1 + s_2 = 1 \]
\[S_{\text{min}} = s_1 - s_2 = 0 \]
\[S = s_1 + s_2, s_1 - s_2, \ldots, s_1 - s_2 \]
\[= 1 \text{ and } 0 \]

For each S, $M_s = S, S-1, \ldots, -S$
Many Electron Atoms – p²

- L = 2, 1, 0
 - for each L: \(M_L = L, L - 1, L - 2, \ldots -L \)
 - for each L, there are \(2L + 1 \) functions
- S = 1, 0
 - for each S: \(M_S = S, S - 1, S - 2, \ldots -S \)
 - for each S, there are \(2S + 1 \) functions

Wavefunctions for many electron atoms are characterized by \(L \) and \(S \) and are called terms with symbol:

\[L \text{ and } S \]

\(2S + 1 \)

- singlets: \(^1D, ^1P, ^1S \)
- triplets: \(^3D, ^3P, ^3S \)

Microstates – p²

- For example, \(^3D \) has \(L = 2 \) and \(S = 1 \) so:
 - \(M_L = 2, 1, 0, -1, -2 \) and \(M_S = 1, 0, -1 \)
 - five \(M_L \) values and three \(M_S \) values: \(5 \times 3 = 15 \) wavefunctions with the same energy

\[\left(\frac{+/-}{M_{l_1}, M_{l_2}} \right) \]

\[M_L = m_{l_1} + m_{l_2} \]

\[M_S = m_{s_1} + m_{s_2} \]
Pauli Principle and Indistinguishability

- The Pauli principle forbids two electrons having the same set of quantum numbers. Thus for p^2
 - Microstates such as $(1, 1)$ and $(-1, -1)$ are not allowed
- Electrons are indistinguishable
 - Microstates such as $(1, -1)$ and $(-1, 1)$ are the same

- Microstates such as $(1, -1)$ and $(1, -1)$ are different
- For example, for p^2
 - 6 ways of placing 1st electron, 5 ways of placing 2nd electron (Pauli)
 - Divide by two because of indistinguishability: \(\frac{6 \times 5}{2} = 15 \)

<table>
<thead>
<tr>
<th>Microstate</th>
<th>M_L</th>
<th>M_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1))</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((-1, 0))</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>((-1, 1))</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>((-1, 2))</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

Working Out Allowed Terms

1. Pick highest available M_L; there is a term with L equal to this M_L
 - Highest $M_L = 2 \rightarrow L = 2 \rightarrow$ D term
2. For this M_L; pick highest M_S; this term has S equal to this M_S
 - Highest $M_S = 0 \rightarrow S = 0 \rightarrow 2S+1 = 1$: D term
3. Term must be complete:
 - For $L = 2$, $M_L = 2, 1, 0, -1, -2$ for each value of M_S, strike out microstates with these M_L values
 - For $S = 0$, $M_S = 0$
4. Repeat 1-3 until all microstates are used up
 a. Highest $M_L = 1 \rightarrow L = 1 \rightarrow$ P term
 b. Highest $M_S = 1 \rightarrow S = 1 \rightarrow 2S+1 = 3$: P term
 c. Strike out 9 microstates ($M = 1, 0, -1$ for each $M_L = 1, 0, -1$)
 d. Left with $M_L = 0 \rightarrow L = 0 \rightarrow$ S term
 e. This has $M_L = 0 \rightarrow S = 0 \rightarrow 2S+1 = 1$: S term
Check

• The configuration \(p^2 \) gives rise to 15 microstates
• These give belong to three terms:
 - \(^1D \) is composed of 5 states (\(M_S = 0 \) for each of \(M_L = 2, 1, 0, -1, -2 \))
 - \(^3P \) is composed of 9 states (\(M_S = 1, 0, -1 \) for each of \(M_L = 1, 0, -1 \))
 - \(^1S \) is composed of 1 state (\(M_S = 0, M_L = 0 \))
 - \(5 + 9 + 1 = 15 \)
• The three terms differ in energy:
 - Lowest energy term is \(^3P \) as it has highest \(S \) (unpaired electrons)

Summary

Configurations
• For many electron atoms, the \(H_{\text{tttot}} \) gives rise to configurations
• Each configuration represents more than one arrangements
Terms
• The arrangements or microstates are grouped into terms according to \(L \) and \(S \) values
• The terms differ in energy due to interelectron repulsion
Next week
• Hund’s rules and ionization energies
Task!
• Work out allowed terms for \(d^2 \)