MOLECULAR ORBITALS AND BONDING

Model 1: Single, Double and Triple Bonds

Molecule	Structure	Bond	Bond Order	Bond Energy (kJ mol ⁻¹)
H ₂ O	н	О-Н	1	498
ethane	$H \xrightarrow{H} C \xrightarrow{H} H$	С-С С-Н	1 1	376 420
ethene		С-С С-Н	2 1	720 444
ethyne	н—с≡с—н	С-С С-Н	3 1	962 552
carbon dioxide	o==c==0	C-0	2	804
methanal (formaldehyde)	H c===o	С-О С-Н	2 1	782 364
oxygen	0=0	0-0	2	498
nitrogen	N	N-N	3	945

The table below lists Lewis structures and bond orders and energies for selected molecules.

Critical thinking questions

- 1. The title of Model 1 identifies 3 types of bonds. Give an example of each type of bond from the molecules in the table.
- 2. What is the relationship between the *bond order* of a bond and the designation *single*, *double* and *triple* bonds?
- 3. Rank the three types of bonds in Model 1 in order of increasing strength.

Model 2: σ and π Molecular Orbitals

Molecular orbitals describe the properties of electrons in molecules and a knowledge of them gives insight into the reactivity and stability of compounds. Commonly, molecular orbitals are described as being σ (pronounced 'sigma') or π (pronounced 'pi'). The pictures below show two examples of σ orbitals and one example of a π orbital in a diatomic molecule. The black dots (•) show the position of the nuclei.

- σ orbitals are symmetric around a line joining the two nuclei.
- π orbitals have a node along this line: they are zero along the *horizontal* dotted line shown above.

Critical thinking questions

4. Label the orbitals below as σ or π .

Model 3: Bonding and Anti-Bonding Molecular Orbitals

When electrons occupy a *bonding orbital*, they strengthen the bond. When electrons occupy an *anti-bonding orbital*, they weaken the bond.

Anti-bonding orbitals, such as the one drawn opposite, have a nodal plane between the nuclei: they are zero along the *vertical* dotted line shown.

 σ^*

An asterisk ("*") is added to the σ or π label to show this.

Critical thinking questions

5. Identify the anti-bonding orbitals in Model 2 and add an asterisk to their σ or π labels.

Model 4: Molecular Orbital Diagrams

The figures opposite show two *molecular orbital diagrams*, or MO diagrams. The top one is for H_2 . The bottom one is for a diatomic molecule made of second row elements such as N_2 . Each orbital is represented by a line, showing its energy, and may hold a maximum of 2 electrons.

Note that there are 2π orbitals and $2 \pi^*$ orbitals and this is represented by 2 lines in each case.

The valence electrons of the two elements are placed in these orbitals, starting from the lowest energy orbitals at the bottom. For example:

- As H has 1 valence electron, the molecule H₂ has 2. These are placed as shown on the top diagram with the electrons in the σ orbital.
- As B has 3 valence electrons, the diatomic molecule B₂ has 6. These are placed as shown on the bottom diagram. 2 electrons in σ, 2 electrons in σ* and 2 electrons in the π orbitals.

The last 2 electrons occupy one π orbital each as this keeps the electrons further away from each other. The completed MO diagram correctly predicts that the B₂ molecule has 2 unpaired electrons and is, as a result, *paramagnetic*.

Once the electrons have been added to the diagram, the *bond order* can be worked out by first counting up the number of bonding and anti-bonding electrons and then calculating:

bond order = $\frac{1}{2}$ (number of bonding electrons – number of anti-bonding electrons)

For H_2 , there are 2 bonding electrons (2 in σ) and no anti-bonding electrons and so:

bond order = $\frac{1}{2}(2-0) = 1$

For B₂, there are 4 bonding electrons (2 in σ and 2 in π) and 2 anti-bonding electrons (in σ^*) and so:

bond order = $\frac{1}{2}(4-2) = 1$

Critical thinking questions

- 6. Using the labels as a guide, sketch the remaining orbitals from Model 2 on the bottom diagram.
- 7. Add electrons to the diagram so that it shows the occupation for N_2 . Calculate its bond order.
- 8. Add electrons to the diagram so that it shows the occupation for O₂. Calculate its bond order.
- 9. How do the bond orders you calculated in Q7 and Q8 compare to those in the table in Model 1?
- 10. What would be the bond order in nitric oxide, NO?