CHEM1612: Worksheet 4: Equilibrium

Model 1: The Equilibrium Constant

Many chemical reactions lead to a mixture of reactants and products. You will end up with a mixture of both $NO_2(g)$ and $N_2O_4(g)$ whether you start with pure $NO_2(g)$ or pure $N_2O_4(g)$. Such reactions are said to reach an equilibrium in which the amount of each substance does not change.

Consider a reaction such as that below which has been left long enough to reach equilibrium.

$$wW(g) + xX(g) \implies yY(g) + zZ(g)$$

The equilibrium constant in terms of concentrations, K_c , is a constant at a given temperature that defines how much of each substance there will be at equilibrium:

$$K_{c} = \frac{[\mathbf{Y}(\mathbf{g})]^{y} [\mathbf{Z}(\mathbf{g})]^{z}}{[\mathbf{W}(\mathbf{g})]^{w} [\mathbf{X}(\mathbf{g})]^{x}}$$

If $K_c > 1$, the mixture will contain more of the substances on the right hand side (Y and Z) of the equation. If $K_c < 1$, the mixture will contain more of the substances on the left hand side (W and Z) of the equation.

In worksheets 2 and 3, you studied the thermodynamics of the equilibrium between NO₂ and its dimer N₂O₄. Starting from NO₂, the formation of the dimer can be studied using one of the two equations below:

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

$$NO_2(g) \implies {}^{1}\!\!/_{\!2} N_2O_4(g)$$

Starting from the dimer, the formation of NO₂ can be studied using one of the two equations below:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$\frac{1}{2} N_2 O_4(g) \implies NO_2(g)$$

Critical thinking questions

Write down the expression for K_c for reactions A, B, C and D in Model 1.

$$K_{\rm c}({\rm A}) =$$

$$K_{\rm c}$$
 (B) = $\overline{}$

$$K_{c}(B) =$$
 $K_{c}(C) =$ $K_{c}(D) =$

$$K_{\rm c}$$
 (D) = $\overline{}$

Looking at the equations in Q1, what is the *mathematical* relationship between the different forms of K_c ? 2.

(a)
$$K_c(A)$$
 and $K_c(B)$

(b)
$$K_c$$
 (A) and K_c (C)

3. At equilibrium at room temperature, $[NO_2(g)] = 1.60 \text{ M}$ and $[N_2O_4] = 0.20 \text{ M}$. Calculate the values of $K_c(A)$ and $K_c(B)$ and $K_c(C)$ and hence confirm your analysis in Q2.

Model 2: The Reaction Quotient

The reaction quotient, Q_c , for a reaction $wW(g) + xX(g) \implies yY(g) + zZ(g)$, is defined as follows:

$$Q_{c} = \frac{[Y(g)]^{y} [Z(g)]^{z}}{[W(g)]^{w} [X(g)]^{x}}$$

It looks similar to the equilibrium constant expression. The difference is that Q_c can be calculated at any time during a reaction or if a reaction is disturbed. It is used to predict the direction in which a reaction will move.

Critical thinking questions

Consider the reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$ to be at equilibrium with $[NO_2(g)] = 1.60$ M, $[N_2O_4] = 0.20$ M and $K_c = 0.078$.

- 1. Predict *qualitatively* what will happen to this reaction if more NO_2 is added so that $[NO_2(g)] = 2.00 \text{ M}$?
- 2. Predict *qualitatively* what will happen to this reaction if instead NO₂ is removed so that $[NO_2(g)] = 1.00 \text{ M}$?
- 3. Calculate the values for Q_c for these two experiments.

(a)
$$[NO_2(g)] = 2.00 \text{ M} \text{ and } [N_2O_4] = 0.20 \text{ M}$$
: $Q_c =$

(b)
$$[NO_2(g)] = 1.00 \text{ M} \text{ and } [N_2O_4] = 0.20 \text{ M}$$
: $Q_c =$

- 4. Using your answers to Q1 3, what in general happens to a reaction if
 - (a) $Q_c \leq K_c$
 - (b) $Q_c > K_c$

Model 3: Equilibrium calculations

Model 2 gives you the tools to predict the direction in which a reaction will move if it is not at equilibrium. The concentrations that will be obtained when equilibrium is finally reached can be calculated using an ICE table: initial-change-equilibrium.

Consider the starting mixture in Q1 of Model 2: $[NO_2(g)] = 2.00$ M and $[N_2O_4(g)] = 0.20$ M. These are the initial concentrations and are written in the first row of the *reaction table* below. You know from Model 2 that this reaction will shift so that some $NO_2(g)$ reacts to make $N_2O_4(g)$. We do not know *how much* will react but we *can* calculate it:

	2NO ₂ (g)	-	$N_2O_4(g)$
initial	2.00		0.20
change			+x
equilibrium			0.20 + x

Critical thinking questions

- 1. From the chemical equation: every time *one* N_2O_4 molecule is formed, *two* NO_2 molecules are lost. If $[N_2O_4(g)]$ *increases* by x to reach equilibrium, what will the change in $[NO_2(g)]$ be? Add this change to the second row of the table. (*Hint*: is the change positive or negative.
- 2. Complete the third row of the table.
- 3. Substitute the equilibrium concentrations from the third row into your expression for $K_c(A)$ from Q1 in Model 1.

4.	You now have a <i>mathematical</i> expreout the equilibrium values of [NO ₂ (g	ession to solve for x . Using $K_c = 0.078$. solve g)] and $[N_2O_4(g)]$.	for x and hence work
Exe	rcises		
CHI	EM1612	2006-N-6	November 2006
	eaction:	arther with $H_2O(g)$ in the so-called "water-gas	s shift" Marks 4
	$CO(g) + H_2O(g)$	$O(g) \iff CO_2(g) + H_2(g)$	
At 900 K, $K_c = 1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of CO(g) and H ₂ (g), as well as 0.250 mol L ⁻¹ H ₂ O(g). This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains 0.070 mol L ⁻¹ CO ₂ (g). What was the initial concentration of CO(g) and H ₂ (g) in the sample?			
		$[CO] = [H_2] =$	
If the walls of the container are chilled to below 100 °C, what will be the effect on the concentration of $CO_2(g)$?			

Marks

10

• At 700 °C, hydrogen and iodine react according to the following equation.

$$H_2(g) + I_2(g) \longrightarrow 2HI(g)$$

$$K_{\rm c} = 49.0$$

Hydrogen also reacts with sulfur at 700 °C:

$$2H_2(g) + S_2(g)$$
 \Longrightarrow $2H_2S(g)$ $K_c = 1.075 \times 10^8$

$$K_c = 1.075 \times 10^8$$

Determine K_c for the following overall equilibrium reaction at 700 °C.

$$2I_2(g) + 2H_2S(g)$$
 \Longrightarrow $S_2(g) + 4HI(g)$

 $K_{\rm c}$

If 0.250 mol of HI(g) is introduced into a 2.00 L flask at 700 °C, what will be the concentration of $I_2(g)$ at equilibrium?

Answer:

If 0.274 g of H₂S were now introduced into the same flask, what would be the concentration of $S_2(g)$ at equilibrium?

Answer:

Free Energy And Equilibrium