1 Introduction

This unit of study is designed for those that have not studied chemistry at HSC level. There is no assumed prior knowledge in chemistry, however you are encouraged to undertake the Bridging Course to familiarise yourself with the 'language of chemistry'. The unit offers students an integrated approach to the composition of matter, the shapes of molecules, and the physical and chemical processes that occur in chemistry. The emphasis is on the molecular basis of materials and transformations relevant to everyday experience. The laboratory classes develop an appreciation and understanding of the scientific method and include standard research techniques and experimental methodology. The unit carries a credit point value of 6 and consists of approximately 80 hours of teaching. It contains continuous assessment and concludes with an examination.

Students taking this unit will need to complete supplementary course before enrolling in Intermediate Level Chemistry. This is a free, online course which is usually completed over the summer vacation.

1.1 Assumed Knowledge and Prohibitions

Students enrolling in this course will typically not have undertaken HSC Chemistry or an equivalent. Students with a background in post-16 Chemistry should enrol in CHEM1101.

2 Course Aims, Learning Objectives and Graduate Attributes
2.1 Course Aims
This course serves as an introduction to the language and fundamentals of chemistry and chemical science. Students will gain an understanding of major principles in general chemistry and will acquire manipulative, practical and process skills in the laboratory. In addition, they will become proficient in applying quantitative relationships to predict the physical properties of chemical systems. These latter concepts will provide the foundations of a molecular toolbox that will serve them in any future attempt to understand or use science at a molecular level.

2.2 Learning Outcomes
Detailed learning outcomes for each topic in the syllabus are available at the link below:

After successfully completing this unit, you should be able to demonstrate:

1. an understanding of the concepts and language of general and physical chemistry
2. an understanding of atomic theory, structure and bonding, energetics, equilibrium and the processes occurring in solution
3. the ability to perform safe laboratory manipulations and to handle glassware
4. the ability to find and analyse information and judge its reliability and significance
5. the ability to communicate scientific information appropriately both orally and through written work
6. the ability to engage in team and group work for scientific investigations and for the process of learning
7. a sense of responsibility and independence as a learner and as a scientist
8. basic skills in computing, numeracy and data handling

2.3 Graduate Attributes
Graduate Attributes are generic attributes that encompass not only technical knowledge but additional qualities that will equip students to be strong contributing members of professional and social communities in their future careers. The overarching graduate attributes identified by the University relate to a graduate’s attitude or stance towards knowledge, towards the world, and towards themselves. These are understood as a combination of five overlapping skills or abilities, the foundations of which are developed as part of specific disciplinary study. For further details please refer to the Science faculty website at: http://www.itl.usyd.edu.au/graduateAttributes/facultyGA.cfm?faculty=Science

<table>
<thead>
<tr>
<th>Graduate Attributes</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Research and Inquiry</td>
<td></td>
</tr>
<tr>
<td>A1. Apply scientific knowledge and critical thinking to identify, define and analyse problems, create solutions, evaluate opinions, innovate and improve current practices.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>A2. Gather, evaluate and deploy information relevant to a scientific problem.</td>
<td>1, 2, 4, 5</td>
</tr>
<tr>
<td>A3.</td>
<td>Design and conduct investigations, or the equivalent, and analyse and interpret the resulting data.</td>
</tr>
<tr>
<td>A4.</td>
<td>Critically examine the truth and validity in scientific argument and discourse, and evaluate the relative importance of ideas.</td>
</tr>
<tr>
<td>A5.</td>
<td>Disseminate new knowledge and engage in debate around scientific issues.</td>
</tr>
<tr>
<td>A6.</td>
<td>Value the importance of continual growth in knowledge and skills, and recognise the rapid, and sometimes major, changes in scientific knowledge and technology.</td>
</tr>
</tbody>
</table>

B Information Literacy

B1.	Use a range of searching tools (such as catalogues and databases) effectively and efficiently to find information.	1, 2, 5, 8
B2.	Access a range of information sources in the science disciplines, for example books, reports, research articles, patents and company standards.	1, 2, 4, 8
B3.	Critically evaluate the reliability and relevance of information in a scientific context.	1, 2, 4, 8
B5.	Use information technology to gather, process, and disseminate scientific information.	4, 8

C Communication

C1.	Explain and present ideas to different groups of people in plain English.	1, 2, 4, 5
C2.	Write and speak effectively in a range of contexts and for a variety of different audiences and purposes.	5, 8
C3.	Use symbolic and non-verbal communication, such as pictures, icons and symbols as well as body language and facial expressions, effectively.	1, 2, 5, 8
C4.	Present and interpret data or other scientific information using graphs, tables, figures and symbols.	1, 2, 5, 8
C5.	Work as a member of a team, and take individual responsibility within the group for developing and achieving group goals.	1, 2, 3, 6, 7
C6.	Take a leadership role in successfully influencing the activities of a group towards a common goal.	1, 2, 6, 7

D Ethical, Social and Professional Understanding

| D1. | Demonstrate an understanding of the significance and scope of ethical principles, both as a professional scientist and in the broader social context, and a commitment to apply these principles when making decisions. | 1, 2, 4, 7 |
| D2. | Appreciate the importance of sustainability and the impact of science within the broader economic, environmental and socio-cultural context. | 1, 2, 4, 7 |

E Personal and Intellectual Autonomy

| E1. | Evaluate personal performance and development, recognise gaps in knowledge and acquire new knowledge independently. | 1, 2, 4, 7 |
E2. Demonstrate flexibility in adapting to new situations and dealing with uncertainty.

E4. Set achievable and realistic goals and monitor and evaluate progress towards these goals.

E5. Demonstrate openness and curiosity when applying scientific understanding in a wider context.

2.4 Threshold Learning Outcomes

The Threshold Learning Outcomes (LTOs) are the set of knowledge, skills and competencies that a person has acquired and is able to demonstrate after the completion of a bachelor degree program. The TLOs are not equally weighted across the degree program and the numbering does not imply a hierarchical order of importance.

<table>
<thead>
<tr>
<th>Threshold Learning Outcomes</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Understanding science</td>
<td></td>
</tr>
<tr>
<td>2 Scientific knowledge</td>
<td></td>
</tr>
<tr>
<td>2.1 Demonstrating well-developed knowledge in at least one disciplinary area</td>
<td>1, 2</td>
</tr>
<tr>
<td>3 Inquiry and problem solving</td>
<td></td>
</tr>
<tr>
<td>3.1 Gathering, synthesising and critically evaluating information from a range of sources</td>
<td>4</td>
</tr>
<tr>
<td>3.4 Collecting, accurately recording, interpreting and drawing conclusions from scientific data</td>
<td>4, 6, 8</td>
</tr>
<tr>
<td>4 Communication</td>
<td></td>
</tr>
<tr>
<td>4.1 Communicating scientific results, information or arguments, to a range of audiences, for a range of purposes, and using a variety of modes</td>
<td>5</td>
</tr>
<tr>
<td>5 Personal and professional responsibility</td>
<td></td>
</tr>
<tr>
<td>5.1 Being independent and self-directed learners</td>
<td>6, 7</td>
</tr>
<tr>
<td>5.2 Working effectively, responsibly and safely in an individual or team context</td>
<td>3, 6, 7</td>
</tr>
</tbody>
</table>

3 Work, Health and Safety

3.1 University Work, Health and Safety Policy

This legislation includes:

- **“Other persons at the workplace”** (this includes students and visitors) - are required to take reasonable care that their acts or omissions do not adversely affect the health and safety of themselves or others, and to comply with any reasonable instructions given to ensure health and safety.

Individuals can be prosecuted as well as employers. A tiered regime of penalties has been introduced, with a maximum penalty, for the most serious breaches, of $600,000 and/or five years’ imprisonment for individuals.

With respect to working in practical classes, “reasonable care” includes wearing a lab coat and closed in shoes (the top of the foot must be covered), and complying with safety instructions when handling hazardous materials and/or equipment.

3.2 General Laboratory Safety Rules

<table>
<thead>
<tr>
<th>NO EATING OR DRINKING IS ALLOWED IN ANY LABORATORY UNDER ANY CIRCUMSTANCES</th>
<th>A LABORATORY COAT IS MANDATORY</th>
<th>APPROPRIATE FOOTWEAR IS MANDATORY</th>
</tr>
</thead>
</table>

1. If you are thirsty, you must leave the laboratory to have a drink.
2. Appropriate footwear must be worn at all times in laboratories. You will not be allowed in the laboratory in open-toed shoes, shoes which do not cover your feet adequately or raised shoes that increase your likelihood of tripping or falling (platforms, high heels etc).
3. Follow safety instructions in your manual and posted in laboratories.
4. In case of fire, follow instructions from the laboratory supervisor and fire wardens.
5. Be aware of the locations of first aid kits, eye washes, emergency showers and fire extinguishers located in the laboratory.

3.3 Emergency Evacuation Procedures

If you hear the alert signal (interrupted beeping sound), prepare to evacuate:

1. Check for any sign of immediate danger
2. Shut down equipment and processes
3. Collect any nearby personal items

If you hear the evacuate alarm (rising repeated tone):

1. Listen to the instructions given over the loudspeaker
2. Follow the instructions to evacuate the building and proceed to the assembly area
3. Escort visitors and those who require assistance
4. Do not use lifts
3.4 Risk Assessment

Risk Assessment (RA) aims to identify any foreseeable hazard that may arise in the workplace and to assess the risk of harm arising from the identified hazards.

Materials Safety Data Sheets (MSDS) provide employees, self-employed persons, workers and other health and safety representatives with the necessary information to safely manage the risk from hazardous substance exposure. For each practical class, a risk assessment and relevant MSDS will be available for viewing. It is the responsibility of each student to read the relevant RA before each practical class.

4 Study Commitment

The current standard work load for a 6 credit point unit of study is 3-7 hours per week of face-to-face teaching contact hours and an additional 6 hours per week of student work of independent study. Below is a breakdown of our expectations for this unit. It should be noted that ‘Independent Study’ is based on what we believe to be the amount of time a typical student should spend to achieve to pass an item of assessment. Times are a guide only.

<table>
<thead>
<tr>
<th>In class activities</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (39 @ 1 hour each)</td>
<td>39</td>
</tr>
<tr>
<td>Practicals (10 @ 3 hours each)</td>
<td>30</td>
</tr>
<tr>
<td>Tutorials (13 @ 1 hour each)</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent Study</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading for lectures (39 @ 0.5 hour each)</td>
<td>20</td>
</tr>
<tr>
<td>Tutorial assignments (13 @ 1 hour each)</td>
<td>13</td>
</tr>
<tr>
<td>Preparation for laboratory work including pre-laboratory quizzes (10 @ 0.5 hours each)</td>
<td>5</td>
</tr>
<tr>
<td>Revision for tutorial quizzes (3 @ 3 hours each)</td>
<td>9</td>
</tr>
<tr>
<td>Preparation for lecture quizzes (10 @ 1 hour each)</td>
<td>10</td>
</tr>
<tr>
<td>Revision for exam</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
</tr>
</tbody>
</table>

Study Tips

You are now in control of your own study strategy, and as an adult learner it is up to you to devise a study plan that best suits you. Many resources are available to assist your learning including online activities, tutorials and support, a range of textbooks and the First Year Chemistry Learning Centre.

- Online resources include ChemCAL, self-learning tests and suggested exam questions for each topic. See 'Course Resources' on the eLearning site for this unit for
more details. The discussion board on the eLearning site is regularly monitored by tutors and lecturers.

- Resources for the recommended textbook are available under 'Textbook Resources' on the eLearning site for this unit. Copies of this textbook and many other suitable reference books are available in the SciTech Library.
- A tutor is available in the Learning Centre each lunch time (1 - 2pm) to answer questions and quick chemistry-related questions. There is no need to book a time. Outside these hours, questions can be placed on the discussion board on the eLearning site.

5 Learning and Teaching Activities

Weekly Schedule

- LECTURES – see the [CHEM1001 website](#) for a full list of available classes
- TUTORIALS – see the [CHEM1001 website](#) for a full list of available classes
- LABORATORIES – see the [CHEM1001 website](#) for a full list of available classes

6 Teaching Staff and Contact Details

<table>
<thead>
<tr>
<th>Unit Coordinator</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Toby Hudson</td>
<td>toby.hudson@sydney.edu.au</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Staff</th>
<th>Email</th>
<th>Room</th>
<th>Phone</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Adrian George</td>
<td>adrian.george@sydney.edu.au</td>
<td>224</td>
<td>9351 4413</td>
<td>Series 1 (weeks 1 - 7)</td>
</tr>
<tr>
<td>Dr Alice Williamson</td>
<td>alice.williamson@sydney.edu.au</td>
<td>528</td>
<td>9351 5747</td>
<td>Series 2 (weeks 1 - 7)</td>
</tr>
<tr>
<td>Prof Brendan Kennedy</td>
<td>brendan.kennedy@sydney.edu.au</td>
<td>458</td>
<td>9351 3743</td>
<td>Series 3 (weeks 1 - 7) and</td>
</tr>
</tbody>
</table>
7 Learning Resources

Recommended Textbook

Either of the following:

ISBN: 978-0-7303-1105-8 (paperback) and 978-0-7303-2492-8 (e-text)

Especially if:
- You are considering changing to CHEM1101
- You want to buy a hard copy of the text

ISBN: 978-0-7303-1106-5 (paperback) and 978-0-7303-2493-5 (e-text)

Especially if:
- You are NOT considering changing to CHEM1101
- You want a Fundamentals focused text
- You only want an electronic text

Textbooks can be purchased at the Co-op Bookshop and copies are also on reserve in the SciTech Library. The textbook is a recommended purchase and is not compulsory. Resources provided by the publisher, including a link to their course website, are available under 'Textbook Resources' on the eLearning site for this unit.

8 Assessment Tasks

You are responsible for understanding the University policy regarding assessment and examination, which can be found at https://sydney.edu.au/policies/showdoc.aspx?recnum=PD0C2014/378&RendNum=0
Formative and Summative Assessment

Assessment in this unit will be formative (for self assessment and feedback) and summative (for feedback and marks).

Compulsory Assessments

The laboratory course must be passed to pass this unit of study (see details below). Otherwise, assessment marks must total at least 50% to pass and no other assessment (including the examination) need be passed separately.

8.1 Summative Assessments

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Brief Description</th>
<th>Percentage Mark</th>
<th>Due Date</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Quiz 1</td>
<td></td>
<td>5</td>
<td>Week 5 (week starting Sunday, 08 April 2018)</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>Tutorial Quiz 2</td>
<td></td>
<td>5</td>
<td>Week 9 (week starting Sunday, 06 May 2018)</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>Tutorial Quiz 3</td>
<td></td>
<td>5</td>
<td>Week 12 (week starting Sunday, 27 May 2018)</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>Lecture Quizzes</td>
<td></td>
<td>10</td>
<td>Weekly (weeks: 2, 3, 4, 6, 7, 8, 10, 11, 13 and mid-semester week)</td>
<td>1, 2, 7, 8</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>Exam Period</td>
<td>1, 2, 8</td>
</tr>
<tr>
<td>Laboratory Attendance and Attitude</td>
<td></td>
<td>3</td>
<td>Weekly (weeks: 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12)</td>
<td>3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>Pre-Laboratory Quizzes</td>
<td></td>
<td>3</td>
<td>Weekly (weeks: 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12)</td>
<td>4, 8</td>
</tr>
<tr>
<td>Laboratory Log Book</td>
<td></td>
<td>4</td>
<td>Weekly (weeks: 3, 4, 5, 6, 8, 9, 10, 11 and 12)</td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>Laboratory Skills</td>
<td></td>
<td>5</td>
<td>Weekly (weeks: 3, 4, 5, 6, 8, 9, 10, 11 and 12)</td>
<td>3, 5, 6</td>
</tr>
</tbody>
</table>

Descriptions of Summative Assessments

Tutorial Quiz 1

The quiz involves 10 multiple choice questions and will be held in the tutorial class. A sample quiz will be made available during the previous week (see 'Course Resources' on the eLearning site) and this should be consulted for the topics and style of the questions in the quiz. The result and detailed personal feedback will be sent to your university email.
Tutorial Quiz 2

The quiz involves 10 multiple choice questions and will be held in the tutorial class. A sample quiz will be made available during the previous week (see 'Course Resources' on the eLearning site) and this should be consulted for the topics and style of the questions in the quiz. The result and detailed personal feedback will be sent to your university email.

Tutorial Quiz 3

The quiz involves 10 multiple choice questions and will be held in the tutorial class. A sample quiz will be made available during the previous week (see 'Course Resources' on the eLearning site) and this should be consulted for the topics and style of the questions in the quiz. The result and detailed personal feedback will be sent to your university email.

Lecture Quizzes

Weekly online quizzes covering the topics in the lecture course. These quizzes are designed to help you develop your understanding of key topics and to give you continuous feedback. The first quiz is in week 1 but is for practice only and the first assessed quiz begins in week 2. The remaining quizzes are available in each week of the semester (except the tutorial quiz weeks but including the midsemester study week), and each one is available for 2 weeks.

Examination

The final examination covers the whole of the lecture course and is made up of approximately 1/3 multiple choice and 2/3 short answer questions. No laboratory work is examinable. Full exam papers with model answers are available via 'Course Resources' on the eLearning site for this unit.

Laboratory Attendance and Attitude

Awarded each week of the laboratory course. This is part of the 15% of the unit mark awarded for the laboratory course. The laboratory course **must** be passed for the unit for the unit to be passed - i.e. a mark of 7.5 / 15 is required. In addition, you must attend 8 out of the 9 experimental session to pass the laboratory course.

Pre-Laboratory Quizzes

Available under 'Laboratory Program' on the eLearning site for this unit and to be completed prior to the relevant experiment. Later completion will incur a 50% penalty.
This is part of the 15% of the unit mark awarded for the laboratory course. This is part of the 15% of the unit mark awarded for the laboratory course.

Laboratory Log Book

Completed during each laboratory session, the log book is a record of observations and hypotheses. See the 'Laboratory Handbook' for more details. Completion of the 'Plagiarism and Academic Honesty' course is required for the log book mark to be recorded. This is part of the 15% of the unit mark awarded for the laboratory course. This is part of the 15% of the unit mark awarded for the laboratory course.

Laboratory Skills

Key laboratory skills completed and assessed during the laboratory sessions. This is part of the 15% of the unit mark awarded for the laboratory course.

8.2 Formative Assessments

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Date Available</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChemCAL Online Tutorials and Other Resources</td>
<td>Always Available</td>
<td>1, 2, 7, 8</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>Weekly</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>Suggested Exam Questions</td>
<td>Weekly</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>Tutorial Worksheets</td>
<td>Weekly</td>
<td>1, 2, 5, 6, 7</td>
</tr>
</tbody>
</table>

Descriptions of Formative Assessments

ChemCAL Online Tutorials and Other Resources
A collection of self-assessment modules and other resources for topics from the lecture course. See 'Resources organised week by week' on the eLearning site for this unit or directly at http://firstyear.chem.usyd.edu.au/chem1001/resources.shtml

Tutorial Assignments
You should download the weekly tutorial problem sheet and complete it each week before your tutorial. See 'Course resources' on the eLearning site for this unit or directly at http://firstyear.chem.usyd.edu.au/chem1001/tutorial_sheets.shtml

Suggested Exam Questions
Past exam topics organized for each topic of the lecture course. See 'Course resources' on the eLearning site for this unit or directly at http://firstyear.chem.usyd.edu.au/chem1001/exam_questions.shtml
Tutorial Worksheets
Group worksheets covering key examinable concepts from the lecture course. These will be provided in hard copy in each tutorial class.

8.3 Assessment Grading

Final grades in this unit are awarded at levels of HD (High Distinction), DI (Distinction), CR (Credit), PS (Pass) and FA (Fail) as defined by Academic Board Assessment Coursework Policy 2014 (available on the Policy Online site). These achievement levels are described below.

The assessments for this unit are described in this unit of study outline. This description includes the purpose, timing and weighting of each assessment item and an explanation of how tasks relate to the learning outcomes of the unit. Students are responsible for actively engaging with these assessments, including carefully reading the guidance provided, spending sufficient time on the task, ensuring their work is authentic and their own (whether individual or group work), completing work on time and acting on feedback provided.

Assessment tasks are moderated to ensure their appropriateness, their consistency with the achievement level descriptors below and equity of grade distributions across the units offered by the Faculty of Science.

As this is a Fundamentals unit, it should be noted that the assessment tasks may give fewer opportunities for students to demonstrate achievement at the HD, DI or CR level.

High Distinction (HD)

At HD level, a student demonstrates a flair for the subject as well as a detailed and comprehensive understanding of the unit material. A ‘High Distinction’ reflects exceptional achievement and is awarded to a student who demonstrates the ability to apply their subject knowledge and understanding to produce original solutions for novel or highly complex problems and/or comprehensive critical discussions of theoretical concepts.

Distinction (DI)

At DI level, a student demonstrates an aptitude for the subject and a well-developed understanding of the unit material. A ‘Distinction’ reflects excellent achievement and is awarded to a student who demonstrates an ability to apply their subject knowledge and understanding of the subject to produce good solutions for challenging problems and/or a reasonably well-developed critical analysis of theoretical concepts.

Credit (CR)

At CR level, a student demonstrates a good command and knowledge of the unit material. A ‘Credit’ reflects solid achievement and is awarded to a student who has a broad general understanding of the unit material and can solve routine problems and/or identify and superficially discuss theoretical concepts.

Pass (PS)
At PS level, a student demonstrates proficiency in the unit material. A ‘Pass’ reflects satisfactory achievement and is awarded to a student who has threshold knowledge.

9 Academic Integrity

While the University is aware that the vast majority of students and staff act ethically and honestly, it is opposed to and will not tolerate academic dishonesty or plagiarism and will treat all allegations of dishonesty seriously.

All students are expected to be familiar and act in compliance with the relevant University policies, procedures and codes, which include:

- Academic Honesty in Coursework Policy 2015
- Academic Honesty Procedures 2016
- Code of Conduct for Students
- Research Code of Conduct 2013 (for honours and postgraduate dissertation units)

They can be accessed via the University's Policy Register: http://sydney.edu.au/policies (enter 'Academic Honesty' in the search field).

Students should never use document-sharing sites and should be extremely wary of using online 'tutor' services. Further information on academic honesty and the resources available to all students can be found on the Academic Integrity page of the University website: http://sydney.edu.au/elearning/student/EI/index.shtml.

9.1 Academic Dishonesty and Plagiarism

Academic dishonesty involves seeking unfair academic advantage or helping another student to do so.

You may be found to have engaged in academic dishonesty if you:

- Resubmit (or 'recycle') work that you have already submitted for assessment in the same unit or in a different unit or previous attempt.
- Use assessment answers hosted on the internet, including those uploaded to document sharing websites by other students.
- Have someone else complete part or all of an assessment for you, or do this for another student.
- Except for legitimate group work purposes, providing assessment questions and answers to other students directly or through social media platforms or document ('notes') sharing websites, including essays and written reports.
- Engage in examination misconduct, including using cheat notes or unapproved electronic devices (e.g., smartphones), copying from other students, discussing an exam with another person while it is in progress, or removing confidential examination papers from the examination venue.
- Engage in dishonest plagiarism.
Plagiarism means presenting another person's work as if it is your own without properly or adequately referencing the original source of the work.

Plagiarism is using someone else's ideas, words, formulas, methods, evidence, programming code, images, artworks, or musical creations without proper acknowledgement. If you use someone's actual words you must use quotation marks as well as an appropriate reference. If you use someone's ideas, formulas, methods, evidence, tables or images you must use a reference. You must not present someone's artistic work, musical creation, programming code or any other form of intellectual property as your own. If referring to any of these, you must always present them as the work of their creator and reference in an appropriate way.

Plagiarism is always unacceptable, regardless of whether it is done intentionally or not. It is considered dishonest if done knowingly, with intent to deceive, or if a reasonable person can see that the assessment contains important material copied from other sources and not properly referenced. The University understands that not all plagiarism is dishonest and provides students with opportunities to improve their academic writing, including their understanding of scholarly citation and referencing practices.

9.2 Use of Similarity Detection Software

All written assessments submitted in this unit of study will be submitted to the similarity detecting software program known as Turnitin. Turnitin searches for matches between text in your written assessment task and text sourced from the Internet, published works and assessments that have previously been submitted to Turnitin for analysis.

There will always be some degree of text-matching when using Turnitin. Text-matching may occur in use of direct quotations, technical terms and phrases, or the listing of bibliographic material. This does not mean you will automatically be accused of academic dishonesty or plagiarism, although Turnitin reports may be used as evidence in academic dishonesty and plagiarism decision-making processes.

10 Learning and Teaching Policies

For full details of applicable university policies and procedures, see the Policies Online site at https://sydney.edu.au/policy

Academic Policies relevant to student assessment, progression and coursework:

* Academic Dishonesty in Coursework. All students must submit a cover sheet for all assessment work that declares that the work is original and not plagiarised from the work of others. The University regards plagiarism as a form of academic misconduct, and has very strict rules that all students must adhere to. For information see the document defining academic honesty and plagiarism at:

Coursework assessment policy. For information, see the documents outlining the University assessment policy and procedures at:

The Faculty process is to use standards based assessment for units where grades are returned and criteria based assessment for Pass / Fail only units. Norm referenced assessment will only be used in exceptional circumstances and its use will need to be justified to the Undergraduate Studies Committee. Special consideration for illness or misadventure may be considered when an assessment component is severely affected. Details of the information that is required to be submitted along with the appropriate procedures and forms is available at:

https://sydney.edu.au/science/cstudent/ug/forms.shtml#special_consideration

Start by going to the Faculty of Science webpage, and downloading the ‘Special Consideration’ pack at the link above.

Special Arrangements for Examination and Assessment. In exceptional circumstances alternate arrangements for exams or assessment can be made. However concessions for outside work arrangements, holidays and travel, sporting and entertainment events will not normally be given. The policy, guidelines and application form including examples of circumstances under which you might be awarded a special arrangement for an examination or assessment task can be found at:

Student Appeals against Academic Decisions. Students have the right to appeal any academic decision made by a school or the faculty. The appeal must follow the appropriate procedure so that a fair hearing is obtained. The formal application form can be obtained at:

Replacement assessments for end of semester examinations

Final examinations will be held in the formal examination period. Students affected by illness, injury or misadventure may lodge a request for Special Consideration to sit a replacement examination.

Students who apply for and are granted either special arrangements or special consideration for end of semester examinations in units offered by the Faculty of Science will be expected to sit any replacement assessments in the two weeks immediately following the end of the formal examination period. Later dates for replacement assessments may be
considered where the application is supported by appropriate documentation and provided that adequate resources are available to accommodate any later date.

If you are registered with Disability Services and would like to have adjustments applied to the replacement examination, you are required to amend your Academic Plan with Disability Services specifically for this replacement examination. This needs to be done as soon as you are notified of the replacement opportunity. If you have not done so, you will be allowed to sit the replacement, but under unadjusted conditions.