**Measurements, units and significant figures**

During this experiment, you will be recording a variety of experimental measurement, as well as performing some calculations using them. Measurement is at the heart of science - whether a scientific theory survives or fails depends on how well it matches up with experimental measurement. Being able to accurately measure and record experimental data are key attributes of professional scientista and ones which you will develop during the laboratory course this year.

# Reporting Measurements

- In almost all cases, reporting numerical results
requiresthat the units are specified.- There is
alwaysa space between a number and its unit.- There is
nevera space between a unit and its prefix.- There is
alwaysa space between each part of a compound unit.

These rules are commonly disregarded in the media and this leads to ambiguity. We do not ignore these rules and neither should you! They are there for

*very good reasons*.

**Examples**

- One TV cook specifies that 25 g of butter is needed for a recipe and another states that “25 of butter is required". Which recipe is easier to follow?”

- A measurement is reported as "10m". Since the letter "m" is used for both metres and to represent the mass, this could have two meanings.
It could mean "ten metres" or it could mean "ten times the mass". You can't tell which!
If it means "ten metres", it would be written as 10 m (i.e. with a space). If it means "ten times the mass", it would be written as 10
*m*(i.e. without a space). Now you can tell which it means! Note that there is no "." after the unit. Units are not abbreviations. - A measurement is reported as "10 ms
^{-1}" - does this mean "ten per millisecond" or does it mean "ten metres per second"? Rules (3) and (4) make it clear that it means "ten per millisecond". - A measurement is reported as "10 m s
^{-1}" - does this mean "ten per millisecond" or does it mean "ten metres per second"? Rules (3) and (4) make it clear that it means "ten metres per second".

**Significant figures**

We have imperfect senses and we use imperfect measuring devices. All measurements we make include some

*uncertainty*. When we use these data, it is important that we recognize what uncertainty is and do not exaggerate its precision.

The number of digits that are reported or recorded are called significant figures ("sf"): an uncertainty of

*one units in the right most digit*is assumed.

The number of significant figures that data is known to is

**not**given explicitly in scientific reports (and not in our exams!).

All digits are significant, except for zeros that are not measured but are used only to position the decimal point.

- Make sure that the measurement has a decimal point. (Add one if necessary.)
- Start at the left of the number and move right until you reach the first non-zero digit.
- Count that digit and every one to its right as significant.
- Zeros that end a number and lie after or before the decimal point are significant.

**Examples:**

- 0.00
__54__L is known to 2 sf __103.2__s is known to 4 sf

- 0.0
__20__L is known to 2 sf __100.20__s is known to 5 sf__1__00 mol is known to only 1 sf (rule 4)__100__. g is known to 3 sf (rule 4)

**Calculations and significant figures**

The leastcertain measurement sets the limit on the certainty for the calculation and the number of significant figures in the answer.

- When
multiplyingordividing, the answer should contain thesamenumber ofsignificant figuresas the measurement with thefewest significant figures.- When
addingorsubtracting, the answer should contain thesamenumber ofdecimal placesas the measurement with thefewest decimal places.

**Examples:**

- The concentration (
*c*) of salt in seawater is measured to be 0.564 mol L^{-1}. The number of moles (*n*) of a volume (*V*) of 1.5 L of seawater is:*n*=*c*×*V*= 0.564 × 1.5 = 0.85 mol - If the contents of two beakers, one containing 20.1 mL of water and one containing 30.02 mL of water, are added together the total volume of water is: V = 20.1 + 30.02 = 50.1 mL The calculator may show "50.12" mL but the volume in the first beaker is only known to 1 decimal place and so the answer is also only known to 1 decimal place.

**Scientific notstion for very large and very small numbers**

Very large and very small numbers are often encountered in Chemistry. Writing them out in full can be

*very*time consuming and can lead to text which is difficult to read. Instead,

*scientific notation*(also called

*exponential notation*) is used. Numbers are expressed in the form:

whereN x 10^{n}

**N**is a number between 1 and 10 and

**n**is the exponent.

**n**is positive for large and negative for small numbers.

If you are

*not*familiar with scientific notation, quickly work through the appendix.